Catalytically Active Coatings for Systems of Steam Conversion of Natural Gas: Synthesis and Catalytic Properties
- 1 Downloads
Abstract
Scientific and engineering problems in development of catalytically active compositions for immobilized catalyst systems for steam conversion of hydrocarbon feedstock to hydrogen fuel have been considered. Processes for synthesis of catalytic powder mixtures and production of functional coatings based on them with the use of a promising method of supersonic cold gas-dynamic sputtering have been studied. The data of experimental study in the field of development of catalysts for methane steam conversion to hydrogen-containing fuel on the Cr15Al15 tape support using as starting materials Ni–Al–Al(OH)3–Ca(OH)2–Mg(OH)2 composite powder mixtures are given.
Keywords:
steam conversion system powder catalytic active mixture functional coating surface morphology strip support promoterNotes
FUNDING
Experimental investigations were performed using instrumentation at the Center for Collective Use of Research Instrumentation Composition, Structure, and Properties of Construction and Functional Materials of the National Research Center Kurchatov Institute—Central Research Institute of Structural Materials Prometey, using state financial support of the Ministry of Education and Science within the framework of agreement no. 14.595.21.0004, unique identifier RFMEFI59517X0004.
REFERENCES
- 1.Tarasov, B.P. and Lototskii, M.V., Hydrogen energetics: Past, present, prospects, Russ. J. Gen. Chem., 2007, vol. 77, no. 4, pp. 660–675.CrossRefGoogle Scholar
- 2.Kuranov, A.L., Korabelnikov, A.V., and Mikhailov, A.M., Printsipy upravleniya i modelirovaniya teplovoi zashchity giperzvukovogo letatel’nogo apparata (Principles of Control and Simulation of Thermal Protection of Hypersonic Aircraft), St. Petersburg: S.-Peterb. Gos. Politekh. Univ., 2014.Google Scholar
- 3.Boreskov, G.K., Periodic law and catalytic properties of elements, in Sto let Periodicheskogo zakona khimicheskikh elementov (A Hundred Years of Periodic Law of Chemical Elements), Moscow: Nauka, 1971, pp. 231–241.Google Scholar
- 4.Ashmore, P.G., Catalysis and Inhibition of Chemical Reactions, London: Butterworth, 1963.Google Scholar
- 5.Hauffe, K., Reaktionen in und an Festen Stoffen, Berlin: Springer-Verlag, 1966.CrossRefGoogle Scholar
- 6.Sabirova, Z.A., Danilova, M.M., Zaikovskii, V.I., et al., Nickel catalysts based on porous nickel for methane steam reforming, Kinet. Catal., 2008, vol. 49, no. 3, pp. 428–434.CrossRefGoogle Scholar
- 7.Vlasov, E.A. and Prokopenko, A.N., Production of hydrogen from hydrocarbonfeed stock on nickel-containing catalysts, Vestn. INZhEKONa, Ser. Tekh. Nauki, 2005, no. 3 (8), pp. 7–13.Google Scholar
- 8.van Beurden, P., On the Catalytic Aspects of Steam-Methane Reforming: A Literature Survey, Petten: Energy Res. Center Neth., 2004, p. 27.Google Scholar
- 9.Wu, H.-G., La Parola, V., Pantaleo, G., Puleo, F., Venezia, A.M., and Liotta, L.F., Ni-based catalysts for low temperature methane steam reforming: recent results on Ni–Au and comparison with other bi-metallic systems, Catalysts, 2013, vol. 3, pp. 563–583.CrossRefGoogle Scholar
- 10.Liu, J.A., Kinetics, catalysis and mechanism of methane steam reforming, MSc Thesis, Worcester: Worcester Polytech. Inst., 2006.Google Scholar
- 11.Lu, Z., Guo, Y., Zhang, Q., Yagi, M., Hatakeyama, J., Li, H., Chen, J., Sakurai, M., and Karneyama, H., A novel catalyst with plate-type anodic alumina supports, Ni/NiAl2O4/γ-Al2O3/alloy, for steam reforming of methane, Appl. Catal., A, 2008, vol. 347, pp. 200–207.Google Scholar
- 12.Choi, J.S., Moon, K.I., Kim, Y.G., Lee, J.S., Kim, C.H., and Trimm, D.L., Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts, Catal. Lett., 1998, vol. 52, pp. 43–47.CrossRefGoogle Scholar
- 13.Pakhomov, N.A., Nauchnye osnovy prigotovleniya katalizatorov (Scientific Foundations for the Preparation of Catalysts), Novosibirsk: Novosib. Gos. Univ., 2010.Google Scholar
- 14.Lemonidou, A. and Vasalos, I.A., Carbon dioxide reforming of methane over 5 wt % Ni/CaO–Al2O3 catalyst, Appl. Catal., A, 2002, vol. 228, nos. 1–2, pp. 227–235.Google Scholar
- 15.Asencios, J.O., Bellido, J.D., and Assaf, E.M., Synthesis of NiO–MgO–ZrO2 catalysts and their performance in reforming of model biogas, Appl. Catal., A, 2011, vol. 397, is. 1–2, pp. 138–144.CrossRefGoogle Scholar
- 16.Nurunnabi, K., Fujimoto, K., Suzuki, B., Li, S., Kado, K., et al., Promoting effect of noble metals addition on activity and resistance to carbon deposition in oxidative steam reforming of methane over NiO–MgO solid solution, Catal. Commun., 2006, vol. 7, no. 2, pp. 73–78.CrossRefGoogle Scholar
- 17.Gerashchenkov, D.A., Farmakovskii, B.V., Vasil’ev, A.F., and Gorynin, I.V., RF Patent 2354749, 2009.Google Scholar
- 18.Gerashchenkov, D.A., Vasil’ev, A.F., Farmakovskii, B.V., and Mashek, A.Ch., Flow temperature of cold gas-dynamic spraying of functional coatings, Vopr. Materialoved., 2014, no. 1 (77), pp. 87–89.Google Scholar
- 19.Vinogradova, T.S., Development of highly efficient porous carriers on a metal basis, Materialy II simpoziuma “Termokhimicheskie protsessy v plazmennoi aerodinamike,” Sankt-Peterburg, 10–12 sentyabrya 2002 g. (Proc. II Symp. “Thermochemical Processes in Plasma Aerodynamics”), St. Petersburg, 2001.Google Scholar
- 20.Tarakanova, T.A., Vinogradova, T.S., Farmakovskii, B.V., Ulin, I.V., Sholkin, S.E., and Yurkov, M.A., RF Patent 2417841, 2011.Google Scholar
- 21.Yakovleva, N.V., Makarova, A.M., Povyshev, A.M., and Shishkova, M.L., Investigation of phase transformations in the synthesis of catalytic coatings on metal substrate, Russ. J. Appl. Chem., 2018, vol. 91, no. 1, pp. 31–39.CrossRefGoogle Scholar
- 22.Gerashchenkov, D.A., Vasil’ev, A.F., Farmakovskii, B.V., and Mashek, A.Ch., Flow temperature of cold gas-dynamic spraying of functional coatings, Vopr. Materialoved., 2014, no. 1 (77), pp. 87–89.Google Scholar
- 23.Diagrammy sostoyaniya dvoinykh metallicheksikh sistem. Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.Google Scholar
- 24.Jung S.B., Minamino Y., Yamane T., and Saji S., Reaction diffusion and formation of Al3Ni and AI3Ni2 phases in the Al–Ni system, J. Mater. Sci. Lett., 1993, vol. 12, pp. 1684–1686.CrossRefGoogle Scholar