Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1372–1377 | Cite as

Catalytically Active Coatings for Systems of Steam Conversion of Natural Gas: Synthesis and Catalytic Properties

  • M. L. ShishkovaEmail author
  • I. V. Yakovleva
FUNCTIONAL MATERIALS
  • 1 Downloads

Abstract

Scientific and engineering problems in development of catalytically active compositions for immobilized catalyst systems for steam conversion of hydrocarbon feedstock to hydrogen fuel have been considered. Processes for synthesis of catalytic powder mixtures and production of functional coatings based on them with the use of a promising method of supersonic cold gas-dynamic sputtering have been studied. The data of experimental study in the field of development of catalysts for methane steam conversion to hydrogen-containing fuel on the Cr15Al15 tape support using as starting materials Ni–Al–Al(OH)3–Ca(OH)2–Mg(OH)2 composite powder mixtures are given.

Keywords:

steam conversion system powder catalytic active mixture functional coating surface morphology strip support promoter 

Notes

FUNDING

Experimental investigations were performed using instrumentation at the Center for Collective Use of Research Instrumentation Composition, Structure, and Properties of Construction and Functional Materials of the National Research Center Kurchatov Institute—Central Research Institute of Structural Materials Prometey, using state financial support of the Ministry of Education and Science within the framework of agreement no. 14.595.21.0004, unique identifier RFMEFI59517X0004.

REFERENCES

  1. 1.
    Tarasov, B.P. and Lototskii, M.V., Hydrogen energetics: Past, present, prospects, Russ. J. Gen. Chem., 2007, vol. 77, no. 4, pp. 660–675.CrossRefGoogle Scholar
  2. 2.
    Kuranov, A.L., Korabelnikov, A.V., and Mikhailov, A.M., Printsipy upravleniya i modelirovaniya teplovoi zashchity giperzvukovogo letatel’nogo apparata (Principles of Control and Simulation of Thermal Protection of Hypersonic Aircraft), St. Petersburg: S.-Peterb. Gos. Politekh. Univ., 2014.Google Scholar
  3. 3.
    Boreskov, G.K., Periodic law and catalytic properties of elements, in Sto let Periodicheskogo zakona khimicheskikh elementov (A Hundred Years of Periodic Law of Chemical Elements), Moscow: Nauka, 1971, pp. 231–241.Google Scholar
  4. 4.
    Ashmore, P.G., Catalysis and Inhibition of Chemical Reactions, London: Butterworth, 1963.Google Scholar
  5. 5.
    Hauffe, K., Reaktionen in und an Festen Stoffen, Berlin: Springer-Verlag, 1966.CrossRefGoogle Scholar
  6. 6.
    Sabirova, Z.A., Danilova, M.M., Zaikovskii, V.I., et al., Nickel catalysts based on porous nickel for methane steam reforming, Kinet. Catal., 2008, vol. 49, no. 3, pp. 428–434.CrossRefGoogle Scholar
  7. 7.
    Vlasov, E.A. and Prokopenko, A.N., Production of hydrogen from hydrocarbonfeed stock on nickel-containing catalysts, Vestn. INZhEKONa, Ser. Tekh. Nauki, 2005, no. 3 (8), pp. 7–13.Google Scholar
  8. 8.
    van Beurden, P., On the Catalytic Aspects of Steam-Methane Reforming: A Literature Survey, Petten: Energy Res. Center Neth., 2004, p. 27.Google Scholar
  9. 9.
    Wu, H.-G., La Parola, V., Pantaleo, G., Puleo, F., Venezia, A.M., and Liotta, L.F., Ni-based catalysts for low temperature methane steam reforming: recent results on Ni–Au and comparison with other bi-metallic systems, Catalysts, 2013, vol. 3, pp. 563–583.CrossRefGoogle Scholar
  10. 10.
    Liu, J.A., Kinetics, catalysis and mechanism of methane steam reforming, MSc Thesis, Worcester: Worcester Polytech. Inst., 2006.Google Scholar
  11. 11.
    Lu, Z., Guo, Y., Zhang, Q., Yagi, M., Hatakeyama, J., Li, H., Chen, J., Sakurai, M., and Karneyama, H., A novel catalyst with plate-type anodic alumina supports, Ni/NiAl2O4/γ-Al2O3/alloy, for steam reforming of methane, Appl. Catal., A, 2008, vol. 347, pp. 200–207.Google Scholar
  12. 12.
    Choi, J.S., Moon, K.I., Kim, Y.G., Lee, J.S., Kim, C.H., and Trimm, D.L., Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts, Catal. Lett., 1998, vol. 52, pp. 43–47.CrossRefGoogle Scholar
  13. 13.
    Pakhomov, N.A., Nauchnye osnovy prigotovleniya katalizatorov (Scientific Foundations for the Preparation of Catalysts), Novosibirsk: Novosib. Gos. Univ., 2010.Google Scholar
  14. 14.
    Lemonidou, A. and Vasalos, I.A., Carbon dioxide reforming of methane over 5 wt % Ni/CaO–Al2O3 catalyst, Appl. Catal., A, 2002, vol. 228, nos. 1–2, pp. 227–235.Google Scholar
  15. 15.
    Asencios, J.O., Bellido, J.D., and Assaf, E.M., Synthesis of NiO–MgO–ZrO2 catalysts and their performance in reforming of model biogas, Appl. Catal., A, 2011, vol. 397, is. 1–2, pp. 138–144.CrossRefGoogle Scholar
  16. 16.
    Nurunnabi, K., Fujimoto, K., Suzuki, B., Li, S., Kado, K., et al., Promoting effect of noble metals addition on activity and resistance to carbon deposition in oxidative steam reforming of methane over NiO–MgO solid solution, Catal. Commun., 2006, vol. 7, no. 2, pp. 73–78.CrossRefGoogle Scholar
  17. 17.
    Gerashchenkov, D.A., Farmakovskii, B.V., Vasil’ev, A.F., and Gorynin, I.V., RF Patent 2354749, 2009.Google Scholar
  18. 18.
    Gerashchenkov, D.A., Vasil’ev, A.F., Farmakovskii, B.V., and Mashek, A.Ch., Flow temperature of cold gas-dynamic spraying of functional coatings, Vopr. Materialoved., 2014, no. 1 (77), pp. 87–89.Google Scholar
  19. 19.
    Vinogradova, T.S., Development of highly efficient porous carriers on a metal basis, Materialy II simpoziuma “Termokhimicheskie protsessy v plazmennoi aerodinamike,” Sankt-Peterburg, 10–12 sentyabrya 2002 g. (Proc. II Symp. “Thermochemical Processes in Plasma Aerodynamics”), St. Petersburg, 2001.Google Scholar
  20. 20.
    Tarakanova, T.A., Vinogradova, T.S., Farmakovskii, B.V., Ulin, I.V., Sholkin, S.E., and Yurkov, M.A., RF Patent 2417841, 2011.Google Scholar
  21. 21.
    Yakovleva, N.V., Makarova, A.M., Povyshev, A.M., and Shishkova, M.L., Investigation of phase transformations in the synthesis of catalytic coatings on metal substrate, Russ. J. Appl. Chem., 2018, vol. 91, no. 1, pp. 31–39.CrossRefGoogle Scholar
  22. 22.
    Gerashchenkov, D.A., Vasil’ev, A.F., Farmakovskii, B.V., and Mashek, A.Ch., Flow temperature of cold gas-dynamic spraying of functional coatings, Vopr. Materialoved., 2014, no. 1 (77), pp. 87–89.Google Scholar
  23. 23.
    Diagrammy sostoyaniya dvoinykh metallicheksikh sistem. Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.Google Scholar
  24. 24.
    Jung S.B., Minamino Y., Yamane T., and Saji S., Reaction diffusion and formation of Al3Ni and AI3Ni2 phases in the Al–Ni system, J. Mater. Sci. Lett., 1993, vol. 12, pp. 1684–1686.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia

Personalised recommendations