Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1357–1364 | Cite as

Experimental Production of Cu–Cr–N Composite Alloys and Thermodynamic Modeling of Their Phase Composition

  • S. Yu. MelchakovEmail author
  • L. E. Bodrova
  • E. Yu. Goyda
  • A. B. Shubin
  • P. A. Somov
FUNCTIONAL MATERIALS
  • 1 Downloads

Abstract

Composite Cu–Cr–N alloys were obtained in situ under vibration of “copper melt–chromium powder” compositions before their crystallization. Two types of alloys were prepared, where chromium powder was freely dispersed or compacted into a tablet. Atmospheric nitrogen was used as a source of chromium nitrides in the alloys. The microstructure of the alloys is represented by a copper matrix hardened with chromium particles and numerous inclusions of nonstoichiometric chromium nitrides Cr2N1 – x. Thermodynamic modeling showed that the composition and quantities of chromium nitrides in the Cu–Cr–N alloy depend on the partial pressure of nitrogen above the melt.

Keywords:

composite alloy copper chromium chromium nitrides in situ synthesis vibration thermodynamic modeling 

Notes

ACKNOWLEDGMENTS

We thank TESCAN Ltd. for help in performing the research.

FUNDING

The research was carried out within the framework of the state assignment to the Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, by subject no. 0396-2015-0078 with use of equipment of the Center of Collective Use Ural-M.

REFERENCES

  1. 1.
    Xiu, S., Yang, R., Xue, J., Wang, J., and Wang, J., Microstructure and properties of CuCr contact materials with different Cr content, Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 389–393.  https://doi.org/10.1016/S1003-6326(11)61612-9 CrossRefGoogle Scholar
  2. 2.
    Durakov, V.G., Gnyusov, S.F., Dampilon, B.V., and Dekhonova, S.Z., Self-organization of the CuCr structure of the contact material of vacuum switches at electron-beam action, Izv. Tomsk. Politekh.Univ., 2014, vol. 324, no. 2, pp. 96–100.Google Scholar
  3. 3.
    Aksenov, A.A., Prosviryakov, A.S., Kudashev, D.V., and Gershman, I.S., Structure and properties of composite materials based on the Cu–Cr system obtained by mechanical alloying, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2004, no. 6, pp. 39–46.Google Scholar
  4. 4.
    Mao, B., Zhang, Y., Zhao, Y., and Liu, G., Two new Cu–Cr alloy contact materials, IEEE 19th International Symposium on Discharges and Electrical Insulation in Vacuum, Piscataway, NJ: Inst. Electr. Electron. Eng., 2000, pp. 729–732.  https://doi.org/10.1109/DEIV.2000.879092
  5. 5.
    Zhang, C., Yang, Z., Wang, Y., Ding, B., and Guo, Y., Preparation of CuCr25 contact materials by vacuum induction melting, J. Mater. Process. Technol., 2006, vol. 178, nos. 1–3, pp. 283–286.  https://doi.org/10.1016/j.jmatprotec.2006.04.010 CrossRefGoogle Scholar
  6. 6.
    Korzhov, V.P., Sintered powder billets of an electrocontact alloy Cu–30% Cr clad with a cast alloy of the same composition, Fiz. Tekh. Vys. Davlenii (Donetsk), 2009, vol. 19, no. 1, pp. 97–100.Google Scholar
  7. 7.
    Braverman, B.Sh., Production technology of chromium nitrides by self-propagating high-temperature synthesis, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Tomsk, 2008.Google Scholar
  8. 8.
    Samsonov, G.V., Nitridy (Nitrides), Kiev: Naukova Dumka, 1969.Google Scholar
  9. 9.
    Toth, L., Transition Metal Carbides and Nitrides, Amsterdam: Elsevier, 1971.Google Scholar
  10. 10.
    Kochetkova, L.P., Metallurgicheskie protsessy v mahsinostroitel’nom proizvodstve: Uchebnoe posobie (Metallurgical Processes in Machine Engineering Industry: Manual), Kirov: Vyatsk. Gos. Univ., 2005.Google Scholar
  11. 11.
    Tolbanova, L.O. and Il’in, A.P., RF Patent 2359785, 2009.Google Scholar
  12. 12.
    Bodrova, L.E., Pastukhov, E.A., and Goida, E.Yu., The influence of mechanical activation on self-dispergation of carbide phases in Cu–W–Nb–C alloys, Rasplavy, 2015, no. 6, pp. 11–16.Google Scholar
  13. 13.
    Bodrova, L.E. and Shubin, A.B., Formation of fine disperse structure of NbC in composite alloys Cu–NbC–WC, Perspekt. Mater., 2017, no. 2, pp. 43–50.Google Scholar
  14. 14.
    Ignat’ev, I., Pastukhov, E., and Bodrova, L., Metod polucheniya splavov nizkochastotnoi obrabotkoi ikh rasplavov (Production of Alloys by Low-Frequency Treatment of Their Melts), Saarbrucken: LAP LAMBERT Academic, 2013.Google Scholar
  15. 15.
    Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (State Diagrams of Binary Metal Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1997, vol. 2.Google Scholar
  16. 16.
    Tikhonovskii, M.A., Analysis of directed phase transformations and development of microcomposite materials at the Kharkov Institute of Physics and Technology, Vopr. At. Nauki Tekh., Ser.: Vak., Chist. Mater., Sverkhprovodn., 2004, no. 6 (14), pp. 115–127.Google Scholar
  17. 17.
    Baker, H., Okamoto, H., et al., ASM Handbook, Vol. 3: Alloy Phase Diagrams, Materials Park: ASM Int., 1992.Google Scholar
  18. 18.
    Guglya, A.G. and Neklyudov, I.M., Chromium nitride-based coatings: production and study, Usp. Fiz. Met., 2005, vol. 6, pp. 197–232.CrossRefGoogle Scholar
  19. 19.
    Mills, T., Thermodynamic relations in the chromium-nitrogen system, J. Less-Common Met., 1972, vol. 26, pp. 223–234.CrossRefGoogle Scholar
  20. 20.
    Kringhoj, P., Bottiger, J., Chevallier, J., Bienk, E.J., and Ratzke, K., The influence of temperature on the microstructure and mechanical properties of sputtered Cr2Nx coatings, Surf. Coat. Technol., 2002, vol. 149, pp. 82–88.CrossRefGoogle Scholar
  21. 21.
    Chase, M.W., Jr., NIST-JANAF Thermochemical Tables, Journal of Physical and Chemical Reference Data Monographs vol. 9, College Park, MR: Am. Inst. Phys., 1998, 4th ed.Google Scholar
  22. 22.
    Braverman, B.Sh., Large-scale effect in self-propagating high-temperature synthesis of chromium nitrides, Khim. and Khim. Tekhnol., 2009, vol. 52, no. 8, pp. 124–125.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Yu. Melchakov
    • 1
    Email author
  • L. E. Bodrova
    • 1
  • E. Yu. Goyda
    • 1
  • A. B. Shubin
    • 1
  • P. A. Somov
    • 2
  1. 1.Institute of Metallurgy, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.“TESCAN Ltd.St. PetersburgRussia

Personalised recommendations