Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1384–1389 | Cite as

Modern Approaches to the Development of Marine Antifouling Coatings

  • A. V. AnisimovEmail author
  • M. A. Mikhailova
  • E. A. Uvarova
FUNCTIONAL MATERIALS
  • 1 Downloads

Abstract

At present, 75–80% of the current operating costs of conventional transport are expended for fuel. According to the International Maritime Organization, the world fleet burns 300 million tons of fuel annually, releasing into the atmosphere 960 million tons of СО2 and 9 million tons of SO2. As a result of fouling, the speed of ships may decrease by 50%. By 2020, without new technologies that reduce fuel consumption, air emissions can grow 40%, taking into account constantly increasing volumes of traffic. Therefore, defense methods against marine overgrowth are an urgent topic, and many leading firms are developing antifouling solutions. The paper considers the main means of protection against fouling with the help of polymer coatings, namely, contact active coatings, nonleaching coatings, self-polishing coatings, and non-biocidal coatings. The mechanism of using polymer coatings, as well as their advantages and disadvantages, is described.

Keywords:

fouling coatings with low surface energy, antifouling coatings, non-biocidal coatings, contact active coatings, nonleaching coatings, self-polishing coatings 

Notes

REFERENCES

  1. 1.
    Drinberg, S.A., Kalinskaya, T.V., and Udenko, I.A., Tekhnologiya sudovykh pokrytii (Technology of Ship Coatings), Moscow: LKM-Press, 2016.Google Scholar
  2. 2.
    Gurevich, E.S., Zashchita ot obrastaniya (Protection from Fouling), Leningrad: Sudostroenie, 1989.Google Scholar
  3. 3.
    Karpov, V.A., Koval’chuk, Yu.L., Poltarukha, O.P., and Il’in, I.N., Kompleksnyi podkhod k zashchite ot morskogo obrastaniya i korrozii (Complex Approach to Protection for Marine Fouling and Corrosion), Moscow: KMK, 2007.Google Scholar
  4. 4.
    Christian, M., Moeller, P.D.R., Ballard, T.E., Richards, J.J., Huigens, III, R.W., and Cavanagh, J., Evaluation of dihydrouridine as an antifouling additive in marine paint, Int. Biodeterior. Biodegrad., 2009, vol. 63, no. 4, pp. 529–532.CrossRefGoogle Scholar
  5. 5.
    Chambers, L.D., Walsh, F.C., Wood, R.J.K., and Stokes, K.R., Modern approaches to marine antifouling coatings, Surf. Coat. Technol., 2006, vol. 201, pp. 3642–3652.CrossRefGoogle Scholar
  6. 6.
    Munger, C.G., Corrosion Prevention by Protective Coatings, Houston, TX: Natl. Assoc. Corros. Eng., 1987, pp. 57–58.Google Scholar
  7. 7.
    Frost, A.M., Protivoobrastayushchie pokrytiya s dlitel’nym srokom sluzhby (Anti-Fouling Coatings with Prolonged Service Life), Leningrad: Leningr. Dom. Nauchno-Tekh. Propagandy, Obraz. Nauka, 1989.Google Scholar
  8. 8.
    Railkin, A.I., Protsessy kolonizatsii i zashchita ot obrastaniya (Colonization Processes and Protection from Fouling), St. Petersburg: St.-Peterb. Gos. Univ., 1998.Google Scholar
  9. 9.
    Paints and varnishes materials for painting of vessels and offshore constructions (according to the journal materials Coatings World 2010, May, pp. 39–42), Lakokras. Prom-st’, 2010, no. 7, pp. 12–14.Google Scholar
  10. 10.
    New paints and varnishes for shipbuilding: foreign press overview, Lakokras. Prom-st’, 2010, no. 7, pp. 20–23.Google Scholar
  11. 11.
    Lambourne, R., Paint and Surface Coatings: Theory and Practice, New York: Wiley, 1987.Google Scholar
  12. 12.
    Southward, A.J. and Balkema, A.A., Barnacle Biology, Crustacean Issues vol. 5, Rotterdam: A.A. Balkema, 1987.Google Scholar
  13. 13.
    Helio, C. and Yebra, D., Advances in Marine Antifouling Coatings and Technology, Cambridge: Woodhead, 2009.CrossRefGoogle Scholar
  14. 14.
    Thouveunin, M., Peron, J.-J., Langlois, V., Guerin, P., Langlois, J.-Y., and Vallee-Rehel, K., Formulation and antifouling activity of marine paints: a study by a statistically based experiments plan, Progr. Org. Coat., 2002, vol. 44, pp. 85–92.CrossRefGoogle Scholar
  15. 15.
    Thomas, K.V., McHugh, M., Hilton, M., and Waldock, M., Increased persistence of antifouling paint biocides when associate with paint particles, Environ. Pollut., 2003, vol. 123, pp. 153–161.CrossRefGoogle Scholar
  16. 16.
    Konstantinou, I.K. and Albanis, T.A., Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment a review, Environ. Int., 2004, vol. 30, pp. 235–248.CrossRefGoogle Scholar
  17. 17.
    Kiil, S., Weinell, C.E., Pedersen, M.S., and Dam-Johansen, K., Analysis of self-polishing antifouling paints using rotary experiments and mathematical modeling, Ind. Eng. Chem. Res., 2001, vol. 40, no. 18, pp. 3906–3920.CrossRefGoogle Scholar
  18. 18.
    Mironova, G.A., Il’darkhanova, F.I., Kopteva, V.V., and Bogoslovskii, K.G., Improvement of anticorrosion and antifouling coatings, Lakokras. Mater. Ikh Primen., 2010, nos. 1–2, pp. 84–86.Google Scholar
  19. 19.
    Mironova, G.A., Il’darkhanova, F.I., Kopteva, V.V., and Bogoslovskii, K.G., Hydrophobicity of anticorrosion–antifouling coatings, Lakokras. Mater. Ikh Primen., 2010, no. 7, pp. 26–29.Google Scholar
  20. 20.
    Boinovich, L.B. and Emelyanenko, A.M., Hydrophobic materials and coatings: principles of design, properties and applications, Russ. Chem. Rev., 2008, vol. 77, no. 7, pp. 583–600.CrossRefGoogle Scholar
  21. 21.
    Yakovlev, D.A. and Yakovlev, S.A., Lakokrasochnye pokrytiya funktsional’nogo naznacheniya (Functional Paints and Vanishes), St. Petersburg: Khimizdat, 2016.Google Scholar
  22. 22.
    Mironova, G.A., Il’darkhanova, F.I., Kopteva, V.V., and Bogoslovskii, K.G., Silicone-epocoside resins: new film formers in paints and vanishes, Lakokras. Mater. Ikh Primen., 2009, no. 12, pp. 23–25.Google Scholar
  23. 23.
    Kvasnikov, M.Yu., Krylov, I.A., and Patsino, A.V., Fluorine-containing epoxy compositions modified with perfluorocarbons, Lakokras. Mater. Ikh Primen., 2005, no. 6, pp. 12–16.Google Scholar
  24. 24.
    Il’darkhanova, F.I., Mironova, G.A., Kopteva, V.V., and Bogoslovskii, K.G., Creation of superhydrophobic nanomodified anticorrosion-antifouling coatings, Lakokras. Mater. Ikh Primen., 2010, no. 8, pp. 18–21.Google Scholar
  25. 25.
    Anisimov, A.V., Mikhailova, M.A., Stepanova, I.P., and Uvarova, E.A., Modification of the epoxy oligomer by perfluoropolyether fluids on the properties of antifouling coatings, Vopr. Materialoved., 2014, no. 4 (80), pp. 129–134.Google Scholar
  26. 26.
    Anisimov, A.V., Mikhailova, M.A., Stepanova, I.P., and Uvarova, E.A., Patent RF 2602553, 2015.Google Scholar
  27. 27.
    Berglin, M., Lönn, N., and Gatenholm, P., Coating modulus and barnacle bioadhesion, Biofouling, 2003, vol. 19, suppl., pp. 63–69.CrossRefGoogle Scholar
  28. 28.
    Wang, X.M., Wang, H.J., and Liu, D.L., Non-toxic low surface energy antifouling coatings, Paint Coat. Ind., 2004, vol. 34, no. 1, pp. 40–43.Google Scholar
  29. 29.
    Yebra, D.M., Kiil, S., and Dam-Johansen, K., Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings, Progr. Org. Coat., 2004, vol. 50, pp. 75–104.CrossRefGoogle Scholar
  30. 30.
    Kharitonov, A.P. and Loginov, B.A., Direct fluorination of polymer final products: from fundamental study to practical application, Russ. J. Gen. Chem., 2009, vol. 79, no. 3, pp. 635–641.CrossRefGoogle Scholar
  31. 31.
    De Rossi, D. and Ahluwalia, A., Biomimetics: new tools for an old myth, Proc. 1st Annual Inte. IEEE-EMBS Special Topic Conf. on Microtechnologies in Medicine & Biology, Lyon, France, October 12–14,2000, Piscataway, NJ: Inst. Electr. Electron. Eng., 2000, pp. 15–17.Google Scholar
  32. 32.
    Nail, R.R., Brott, L.L., Rodriguez, F., Agarwal, G., Kirkpatrick, S.M., and Stone, M.O., Bio-inspired approaches and biological derived materials for coatings, Prog. Org. Coat., 2003, vol. 47, pp. 249–255.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Anisimov
    • 1
    Email author
  • M. A. Mikhailova
    • 1
  • E. A. Uvarova
    • 1
  1. 1.National Research Center Kurchatov Institute—CRISM PrometeySt. PetersburgRussia

Personalised recommendations