Inorganic Materials: Applied Research

, Volume 10, Issue 3, pp 503–511 | Cite as

Influence of Pulsed Beams of Deuterium Ions and Deuterium Plasma on the Aluminum Alloy of Al–Mg–Li System

  • V. N. PimenovEmail author
  • G. G. BondarenkoEmail author
  • E. V. DyominaEmail author
  • S. A. MaslyaevEmail author
  • V. A. GribkovEmail author
  • I. P. SasinovskayaEmail author
  • N. A. EpifanovEmail author
  • V. P. SirotinkinEmail author
  • G. S. SpryginEmail author
  • A. I. GaydarEmail author
  • M. PaduchEmail author


The damage and structural state of the surface layer of Al–Li–Mg samples composed of Al–5% Mg–2% Li (wt %) under pulsed action of power streams of high-temperature deuterium plasma and high-energy deuterium ions in the Plasma Focus (PF) device have been investigated. The radiation power density was q ~ 106 W/cm2; the pulse duration was 50–100 ns. Pulsed thermal heating and rapid cooling is established to lead to the melting and solidification of a thin surface layer of the alloy for several tens of nanoseconds. At the same time, in the superheated surface layer of the alloy, microcavities of a spherical shape are formed which is associated with intense evaporation of lithium into micropores within the heated layer. Thermal stresses caused by abrupt heating, melting, and cooling of a thin surface layer of metal result in formation of microcracks in the near-surface zone of the samples. The evaporation by the power electron beam of the elements of the anode material of the PF device (copper and tungsten) and their subsequent deposition onto the irradiated surface of the investigated samples in the form of droplets of submicron size are noted. It is shown that the thermal and radiation-stimulated processes generated in the alloy under the action of pulsed energy fluxes in the implemented irradiation regime lead to the redistribution of elements in the surface layer of the aluminum solution, contributing to an increase in magnesium content and the formation of magnesium oxide on the surface.


Al–Mg–Li alloy plasma focus dense deuterium plasma fast deuterium ion beam surface damage surface modification 



The work was performed according to the state task no. 075-00746-19-00 and was supported by the International Atomic Energy Agency, grant IAEA CRP no. 19248.


The authors declare that they have no conflict of interest.


  1. 1.
    Fridlyander, I.N., Chuistov, K.V., Berezina, A.L., and Kolobnev, N.I., Alyuminii-litievye splavy: struktura i svoistva (Aluminum-Lithium Alloys: Structure and Properties), Kiev: Naukova Dumka, 1992.Google Scholar
  2. 2.
    Fridlyander, I.N., Shamrai, V.F., Babareko, A.A., Kolobnev, N.I., Khokhlatov,a L.B., and Egiz, I.V., Texture of a sheet of alloy 1430 of the Al–Li–Mg–Cu system and anisotropy of its yield point, Metally, 1999, no. 2, pp. 79–84.Google Scholar
  3. 3.
    Rioja, R.J., Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications, Mater. Sci. Eng., A, 1998, vol. 257, pp. 100–107.CrossRefGoogle Scholar
  4. 4.
    Deschamps, A., Sigli, C., Mourey, T., de Geuser, F., Lefebvre, W., and Davo, B., Experimental and modeling assessment of precipitation kinetics in an Al–Li–Mg alloy, Acta Mater., 2012, vol. 60, no. 5, pp. 1917–1928.CrossRefGoogle Scholar
  5. 5.
    Betsofen, S.Ya., Antipov, V.V., and Knyazev, M.I., Al–Cu–Li and Al–Mg–Li alloys: Phase composition, texture, and anisotropy of mechanical properties (review), Russ. Metall. (Moscow), 2016, vol. 2016, no. 4, pp. 326–341.CrossRefGoogle Scholar
  6. 6.
    Betsofen, S.Ya., Antipov, V.V., Knyazev, M.I., and Oglodkov, M.S., Effect of heat treatment on the phase composition, the texture, and the mechanical properties of a V1461 (Al–Cu–Li) alloy, Russ. Metall. (Moscow), 2015, vol. 2015, no. 11, pp. 929–936.CrossRefGoogle Scholar
  7. 7.
    Bondarenko, G.G. and Kucheryavyi, S.I., Surface segregation of lithium in aluminum-lithium alloys, Fiz. Khim. Obrab. Mater., 1991, no. 1, pp. 132–135.Google Scholar
  8. 8.
    Bondarenko, G.G., Ivanov, L.I., and Kucheryavyi, S.I., Volatility of aluminum–lithium alloys, Fiz. Khim. Obrab. Mater., 1987, no. 4, pp. 93–95.Google Scholar
  9. 9.
    Bondarenko, G.G., Ivanov, L.I., and Kucheryavyi, S.I., Segregation of lithium in Al–2.2% Li alloy, Fiz. Khim. Obrab. Mater., 1985, no. 3, pp. 53–55.Google Scholar
  10. 10.
    Bondarenko, G.G. and Shishkov, A.V., Emission properties of an aluminum-lithium alloy, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech., 1995, vol. 11, no. 9, pp. 944–948.Google Scholar
  11. 11.
    Bondarenko, G.G., Ivanov, L.I., and Kucheryavyi, S.I., Examination of Sputtering of aluminum alloys under ion bombardment, Fiz. Khim. Obrab. Mater., 1986, no. 5, pp. 24–25.Google Scholar
  12. 12.
    Bondarenko, G.G., Korzhavyi, A.P., Kristya, V.I., and Sigov, D.N., Effect of surface relief on ion sputtering of cathode materials of gas discharge lasers, Metally, 1993, no. 3, pp. 97–100.Google Scholar
  13. 13.
    Bondarenko, G.G., Zhirnov, O.N., Ivanov, L.I., Kucheryavyi, S.I., and Udris, Ya.Ya., Effect of hydrogen plasma on aluminum-lithium alloys, Fiz. Khim. Obrab. Mater., 1992, no. 2, pp. 5–8.Google Scholar
  14. 14.
    Bondarenko, G.G. and Udris, Ya.Ya., Influence of high heat flux loading and irradiation on some promising candidate materials for the divertor structure, Fusion Eng. Des., 1998, vols. 39–40, pp. 419–426.Google Scholar
  15. 15.
    Bondarenko, G.G. and Udris, Ya.Ya., Erosion of materials bombarded by intense polyenergetic beams of hydrogen particles, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., 1999, no. 4, pp. 70–77.Google Scholar
  16. 16.
    Bondarenko, G.G., Radiation-induced processes in the near-surface layers of metal alloys, Metally, 1993, no. 1, pp. 150–161.Google Scholar
  17. 17.
    Ceresara, S., Giarda, A, and Sanchéz, A., Annealing of vacancies and ageing in Al–Li alloys, Philos. Mag., 1977, vol. 35, no. 1, pp. 97–110.CrossRefGoogle Scholar
  18. 18.
    Ovchinnikov, V.V., Gushchina, N.V., Makhin’ko, F.F., Chemerinskaya, L.S., Shkol’nikov, A.R., Mozha-rovskii, S.M., Filippov, A.V., and Kaigorodova, L.I., Structural features of aluminum alloy 1441 irradiated by Ar+ ions, Russ. Phys. J., 2007, vol. 50, no. 2, pp. 177–185.CrossRefGoogle Scholar
  19. 19.
    Ovchinnikov, V.V., Gushchina, N.V., Mozharovsky, S.M., Filippov, A.V., Sagaradze, V.V., and Vildanova, N.F., Examination of structure of aluminum alloys AMg6 and 1441 after ion-beam treatment, Proc. 10th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, September 19–24, 2010, Tomsk, Tomsk: Tomsk. Gos. Univ., 2010, pp. 305–308.Google Scholar
  20. 20.
    Ovchinnikov, V.V., Gavrilov, N.V., Gushchina, N.V., Kamenetskikh, A.S., Emlin, D.R., Mozharovskii, S.M., Filippov, A.V., and Kaigorodova, L.I., Radiation annealing of AMg6, 1441, and VD1 aluminum alloy strips using a ribbon source of accelerated ions, Russ. Metall. (Moscow), 2010, vol. 2010, no. 3, pp. 207–213.CrossRefGoogle Scholar
  21. 21.
    Maslyaev, S.A., Neverov, V.I., Pimenov, V.N., and Sasinovskaya, I.P., Effect of pulse laser radiation on deformable aluminum alloys, Fiz. Khim. Obrab. Mater., 1992, no. 3, pp. 34–37.Google Scholar
  22. 22.
    Pimenov, V.N., Maslyaev, S.A., Ivanov, L.I., Panin, O.V., Dyomina, E.V., Gribkov, V.A., Dubrovsky, A.V., Ugaste, Yu.E., Scholz, M., Miklaszewski, R., and Grunwald, Ya., Interaction of pulsed streams of deuterium plasma with aluminum alloy in a plasma focus device. I. A new methodology of the experiment, Proc. Tallinn Univ. Soc. Educ. Sci., Part B, 2003, vol. 2, pp. 30–39.Google Scholar
  23. 23.
    Pimenov, V.N., Maslyaev, S.A., Dyomina, E.V., Ivanov, L.I., Kovtun, A.V., Gribkov, V.A., Dubrovskii, A.V., and Ugaste, Yu.E., Impact of pulse energy flows on the pipe surface from aluminum alloy in the Plasma focus installation, Perspekt. Mater., 2006, no. 4, pp. 43–52.Google Scholar
  24. 24.
    Pimenov, V.N., Demina, E.V., Maslyaev, S.A., Ivanov, L.I., Gribkov, V.A., Dubrovskii, A.V., Ugaste, Ü.E., Laas, T., Scholz, M., Miklaszewski, R., Kolman, B., and Tartari, A., Damage and modification of materials produced by pulsed ion and plasma streams in dense Plasma Focus device, Nukleonika, 2008, vol. 53, no. 3, pp. 111–121.Google Scholar
  25. 25.
    Maslyaev, S.A., Morozov, E.V., Romakhin, P.A., Pimenov, V.N., Gribkov, V.A., Tikhonov, A.N., Bon-darenko, G.G., Dubrovsky, A.V., Kazilin, E.E., Sasinovskaya, I.P., and Sinitsyna, O.V., Damage of Al2O3 ceramics under the action of pulsed ion and plasma fluxes and laser irradiation, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 3, pp. 330–339.CrossRefGoogle Scholar
  26. 26.
    Epifanov, N.A., Bondarenko, G.G., Demin, A.S., Morozov, E.V., Gribkov, V.A., Pimenov, V.N., and Maslyaev, S.A., Effect of pulse laser radiation, deuterium ion fluxes, and a dense plasma on the surface of aluminum samples with a ceramic coating based on Al2O3, Trudy XXVII mezhdunarodnoi konferentsii “Radiatsionnaya fizika tverdogo tela,” Sevastopol’, 10–15 iyulya 2017, (Proc. XXVII Int. Conf. “Radiation Physics of the Solids,” Sevastopol, July 10–15, 2017), Moscow: Nauchno-Issled. Inst. Perspekt. Mater. Tekhnol., 2017, pp. 59–63.Google Scholar
  27. 27.
    Maslyaev, S.A., Thermal effects under pulsed irradiation of materials in the Plasma Focus device, Perspekt. Mater., 2007, no. 5, pp. 47–55.Google Scholar
  28. 28.
    Bondarenko, G.G., Radiatsionnaya fizika, struktura i prochnost’ tverdykh tel (Radiation Physics, Structure, and Strength of Solids), Moscow: Laboratoriya Znanii, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.National Research University High School of EconomicsMoscowRussia
  3. 3.Scientific Research Institute of Advanced Materials and TechnologiesMoscowRussia
  4. 4.Institute of Plasma Physics and Laser MicrofusionWarsawPoland

Personalised recommendations