Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 3, pp 658–661 | Cite as

Dielectric Properties of Polyethylene/TiO2 Composites

  • A. M. MagerramovEmail author
  • M. M. KulievEmail author
  • R. S. IsmayilovaEmail author
  • R. S. AbdullaevEmail author
COMPOSITE MATERIALS
  • 3 Downloads

Abstract

The frequency dependences in the range of 25–106 Hz of dielectric properties (real and imaginary parts of complex dielectric permittivity and electric modulus) of composite materials based on high-density polyethylene and dispersed filler TiO2 are studied. It is shown that the real part of the complex dielectric permittivity ε of composites increases with decreasing frequency. The magnitude of the effect increases with an increase in the TiO2 content in the composite of more than 20%. At high frequencies >2 × 103 Hz, the value of ε of composites is practically independent of frequency. The frequency dependences of the electric modulus M—the inverse complex dielectric permittivity—are determined. In composites with a TiO2 content of up to 20%, the imaginary part of the electric modulus M' decreases with increasing frequency, and in composites containing from 20 to 50% TiO2, the opposite effect of decreasing M at low frequencies is observed. On the frequency dependences of all dielectric characteristics, there are no peaks indicative of possible mechanisms of dielectric relaxation associated with molecular mobility.

Keywords:

composites dielectric permeability nanoparticles electric modulus dielectric losses titanium dioxide frequency 

Notes

REFERENCES

  1. 1.
    Ul’zutuev, A.N. and Ushakov, N.M., Temperature dependence of the dielectric properties of metal-polymer composites based on zinc oxide nanoparticles stabilized in low-density polyethylene matrix, Tech. Phys. Lett., 2008, vol. 34, no. 10, pp. 851–853.CrossRefGoogle Scholar
  2. 2.
    Ismaiilova, R.S., Magerramov, A.M., Kuliev, M.M., and Akhundova, G.A., Electrical conductivity and dielectric permittivity of γ-irradiated nanocomposites based on ultrahigh-molecular-weight polyethylene filled with α-SiO2, Surf. Eng. Appl. Electrochem., 2018, vol. 54, no. 1, pp. 6–11.CrossRefGoogle Scholar
  3. 3.
    Magerramov, A.M., Rustamova, D.F., Nuriev, M.A., and Akhmedov, F.I., Specific charge state of composites of polypropylene oxides of metals, Fiz. Khim. Obrab. Mater., 2013, no. 1, pp. 57–60.Google Scholar
  4. 4.
    Hussien, B., Abdul-Muhsien, M., and Hashim, A., Study of some electrical properties of PMMA-TiO2 composites, Atti Fond. Giorgio Ronchi, 2011, vol. 67, no. 1, pp. 45–50.Google Scholar
  5. 5.
    Thabet, A. and Mobarak, Y., Experimental enhancement for electric properties of polyethylene nanocomposites under thermal conductions, Adv. Electr. Electron. Eng., 2017, vol. 15, no. 1, pp. 55–62.Google Scholar
  6. 6.
    Chiang, C.K. and Popielarz, R., Polymer composites with high dielectric constant, Ferroelectrics, 2002, vol. 275, no. 1, pp. 1–9.CrossRefGoogle Scholar
  7. 7.
    Thomas, P., Satapathy, S., Drawakanath, K., and Varma, K.B.R., Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films, eXPRESS Polym. Lett., 2010, vol. 4, no. 10, pp. 632–643.CrossRefGoogle Scholar
  8. 8.
    Zhang, L.D., Zhang, H.F., Wang, G.Z., Mo, C.M., and Zhang, Y., Dielectric behavior of nano-TiO2 bulks, Phys. Status Solidi, 1996, vol. 157, pp. 483–491.CrossRefGoogle Scholar
  9. 9.
    Foster, L.E., Nanotechnology: Science, Innovation, and Opportunity, Upper Saddle River, NJ: Prentice Hall, 2005.Google Scholar
  10. 10.
    Pushkarev, A.I., Novoselov, Yu.N., and Remnev, G.E., Nonequilibrium plasmo-chemical synthesis of nanodisperse metals, in Tsepnye protsessy (Chain Processes), Novosibirsk: Nauka, 2006, pp. 135–185.Google Scholar
  11. 11.
    Magerramov, A.M., Strukturnoe i radiatsionnoe modifitsirovanie elektretnykh, p’ezoelektricheskikh svoistv polimernykh kompozitov (Structural and Radiation Modification of Electret, Piezoelectric Properties of Polymeric Composites), Baku: Elm, 2001.Google Scholar
  12. 12.
    Impedance Spectroscopy: Theory, Experiment, and Applications, Barsoukov, E. and Macdonald, J.R., Eds., New York: Wiley, 2005, 2nd ed.Google Scholar
  13. 13.
    Dey Ashis, De Sukanta, De Amitabha, and De, S.K., Characterization and dielectric properties of polyaniline–TiO2 nanocomposites, Nanotechnology, 2004, vol. 15, no. 9, pp. 1277–1283.Google Scholar
  14. 14.
    Latif, I, Al-Abodi, E.E., Badri, D.H., and Al Khafagi, J., Preparation, characterization, and electrical study of (carboxymethylated polyvinyl alcohol/ZnO) nanocomposites, Am. J. Polym. Sci., 2012, vol. 2, no. 6, pp. 135–140.CrossRefGoogle Scholar
  15. 15.
    Gritsenko, D.V., Shaĭmeev, S.S., Atuchin, V.V., Grigor’eva, T.I., Pokrovskii, L.D., Pchelyakov, O.P., Gritsenko, V.A., Aseev, A.L., and Lifshits, V.G., Two-band conduction in TiO2, Phys. Solid State, 2006, vol. 48, no. 2, pp. 224–228.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Radiation Problems, Azerbaijan National Academy of SciencesBakuAzerbaijan

Personalised recommendations