Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 3, pp 706–712 | Cite as

Kinetics of Reduction of α-Fe2O3 Nanopowder with Hydrogen under Power Mechanical Treatment in an Electromagnetic Field

  • Yu. V. KonyukhovEmail author
  • V. M. NguyenEmail author
  • D. I. RyzhonkovEmail author
NEW METHODS OF TREATMENT AND PRODUCTION OF MATERIALS WITH REQUIRED PROPERTIES
  • 1 Downloads

Abstract

The kinetics of reduction of α-Fe2O3 nanopowder with hydrogen in an electromagnetic field with power mechanical treatment (PMT) in a vortex layer of ferromagnetic particles rotating in the field has been investigated. The kinetic parameters are calculated under the conditions of linear heating and isothermal conditions in accordance with the Freeman–Carroll and McKewan models, respectively. It is established that the electromagnetic field reduces the rate of reduction of the α-Fe2O3 nanopowder to 19% at 400°C, and PMT in a vortex layer intensifies the reduction process up to 4 times. The properties of the starting material and reduction products are studied using the thermogravimetry, X-ray diffraction, and electron microscopy methods.

Keywords:

iron(III) oxide iron nanopowder electromagnetic field vortex layer power mechanical treatment degree of reduction specific surface area 

Notes

REFERENCES

  1. 1.
    Pankhurst, P.Q.A., Connolly, J., Jones, S.K., and Dobson, J., Applications of magnetic nanoparticles in biomedicine, J. Phys. D, 2003, vol. 36, pp. 167–181.CrossRefGoogle Scholar
  2. 2.
    Bengoa, J.F., Alvarez, A.M., Cagnoli, M.V., et al., Fischer–Tropsch reaction on Fe/zeolite-L system. Structure and catalytic behavior, Mater. Lett., 2002, vol. 53, pp. 6–11.CrossRefGoogle Scholar
  3. 3.
    Wei, Y., Fang, Zh., Zheng, L., and Tsang, E.P., Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal, Appl. Surf. Sci., 2017, vol. 399, pp. 322–329.CrossRefGoogle Scholar
  4. 4.
    Getmantsev, S.V., Nechaev, I.A., and Gandurina, L.V., Ochistka promyshlennykh stochnykh vod koagulyantami i flokulyantami (Cleaning of Industrial Wastewater by Coagulants and Flocculants), Moscow: Assots. Stroit. Vuzov, 2008.Google Scholar
  5. 5.
    Ryzhonkov, D.I., Levina, V.V., and Dzidziguri, E.L., Nanomaterialy (Nanomaterials), Moscow: BINOM. Laboratoriya Znanii, 2012.Google Scholar
  6. 6.
    Devatha, C.P., Thalla, A.K., and Shweta, Y.K., Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water, J. Clean. Prod., 2016, vol. 139, pp. 1425–1435.CrossRefGoogle Scholar
  7. 7.
    Fan, M., Zhang, L., Wang, R., Guo, H., and Jia, Sh., Facile and controllable synthesis of iron nanoparticles directed by montmorillonite and polyvinylpyrrolidone, Appl. Clay Sci., 2017, vol. 144, pp. 1–8.CrossRefGoogle Scholar
  8. 8.
    Gai, C., Zhang, F., Lang, Q., Liu, T., Peng, N., and Liu, Zh., Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol, Appl. Catal., B, 2017, vol. 204, pp. 566–576.CrossRefGoogle Scholar
  9. 9.
    Ravikumar, K.V.G., Dubey, S., Pulimi, M., et al., Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride, J. Mol. Liq. A, 2016, vol. 224, pp. 589–598.CrossRefGoogle Scholar
  10. 10.
    Lin, L., Starostin, S.A., et al., Synthesis of iron oxide nanoparticles in microplasma under atmospheric pressure, Chem. Eng. Sci., 2017, vol. 168, pp. 360–371.CrossRefGoogle Scholar
  11. 11.
    Ryzhonkov, D.I., Arsent’ev, P.P., and Yakovlev, V.V., Teoriya metallurgicheskikh protsessov (Theory of Metallurgical Processes), Moscow: Metallurgiya, 1989.Google Scholar
  12. 12.
    Logvinenko, D.D. and Shelyakov, O.P., Intensifikatsiya tekhnologicheskikh protsessov v apparatakh s vikhrevym sloem (Intensification of Technological Processes in Apparatuses with Eddy Layer), Kiev: Tekhnika, 1976.Google Scholar
  13. 13.
    Umanskii, Ya.S., Skakov, Yu.A., et al., Kristallografiya, rentgenografiya i elektronnaya mikroskopiya (Crystallography, X-ray, and Electron Microscopy), Moscow: Metallurgiya, 1982.Google Scholar
  14. 14.
    Freeman, E.S. and Carroll, B., The application of thermoanalytical techniques to reaction kinetics: The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, J. Phys. Chem., 1958, vol. 62, pp. 394–397.CrossRefGoogle Scholar
  15. 15.
    Brown, M., Dollimore, D., and Galwey, A., Reactions in the Solid State, Amsterdam: Elsevier, 1980.Google Scholar
  16. 16.
    McKewan, W.M., Kinetics of iron oxide reduction, Trans. Met. Soc. AIME, 1960, vol. 218, pp. 2–6.Google Scholar
  17. 17.
    Buchachenko, A.L., Sagdeev, R.Z., and Salikhov, K.M., Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh (Magnetic and Spin Effects in Chemical Reactions), Novosibirsk: Nauka, 1978.Google Scholar
  18. 18.
    Rahimi, M. and Dehkordi, A.M., Reactive absorption in packed bed columns in the presence of magnetic nanoparticles and magnetic field: modeling and simulation, J. Ind. Eng. Chem., 2017, vol. 45, pp. 131–144.CrossRefGoogle Scholar
  19. 19.
    Nguyen, V.M., Konyukhov, Yu.V., Ryzhonkov, D.I., and Kotov, S.I., Peculiarities of nanodisperse and micron-size nickel powders produced by hydrogen reduction in the eddy magnetic field, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 2016, no. 1, pp. 4–11.Google Scholar
  20. 20.
    Ryzhonkov, D.I., Kostyrev, S.B., and Gorchakov, Yu.A., Kinetic of reduction of Fe–NiO–CuO mixtures in a rotating electromagnetic field, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1990, no. 5, pp. 101–102.Google Scholar
  21. 21.
    Mishchenko, M.V., Bokov, M.M., and Grishaev, M.E., Activation of materials treatment in the devices with rotating electromagnetic field, Fundam. Issled., 2015, no. 2-16, pp. 3508–3512.Google Scholar
  22. 22.
    Bezzubtseva, M.M. and Volkov, V.S., Teoreticheskie osnovy elektromagnitnoi mekhanoaktivatsii (Theory of Electromagnetic Mechanical Activation), St. Petersburg: S.-Peterb. Gos. Agrar. Univ., 2011.Google Scholar
  23. 23.
    Chernavskii, P.A., Pankina, G.V., Turakulova, A.O., Zaikovskii, V.I., and Perov, N.S., The effect of a magnetic field on the thermal destruction of cobalt formate, Russ. J. Phys. Chem. A, 2009, vol. 83, no. 3, pp. 499–502.CrossRefGoogle Scholar
  24. 24.
    Hans, E., Crystallization of calcium carbonate in magnetic field in ordinary and heavy water, J. Cryst. Growth, 2004, vol. 267, pp. 251–255.CrossRefGoogle Scholar
  25. 25.
    Awaji, S., Ma, Y., Watanabe, K., and Motokawa, M., Magnetic field effects on growth process of YBa2Cu3O7 films by chemical vapor deposition in high magnetic fields, Materia Jpn., 2003, vol. 42, no. 2, pp. 115–123.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations