Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 3, pp 549–555 | Cite as

Cermet Plasma Coatings with Titanium Carbide

  • V. I. KalitaEmail author
  • D. I. KomlevEmail author
  • G. A. PribytkovEmail author
  • A. V. BaranovskyEmail author
  • A. A. Radyuk
  • V. V. KorzhovaEmail author
  • A. Yu. Ivannikov
  • A. V. Alpatov
  • M. G. KrinitsynEmail author
  • A. B. MikhaylovaEmail author
PLASMOCHEMICAL METHODS OF PRODUCTION AND TREATMENT OF MATERIALS
  • 7 Downloads

Abstract

High-grade iron S27 alloy and cermet S27 + 50 vol % TiC are sprayed in Ar-N2 plasma with local protection from the air with a nozzle application. Under S27 alloy spraying, the oxygen content in the coating increases from 0.32 to 0.98%, the nitrogen content increases from 0.038 to 0.15%, and the carbon content is reduced from 4.26 to 3.47%. In the cermet coatings, the oxygen content increases from 0.56 to 1.96%, the nitrogen content increases from 0.068 to 0.64%, and the carbon content is reduced from 10.5 to 8.19%. Changes in the structure and microhardness of the materials investigated depend on the C, O, and N content and the rate of consolidation of sprayed particles.

Keywords:

plasma cermet coatings S27 alloy cermet S27 + 50 vol % TiC content of oxygen carbon and nitrogen in coatings microhardness 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, grants nos. 17-08-00059a, 18-08-00842, 16-48-700381, 16-08-00493a. The experiments on plasma spraying were carried out according to the state task no. 075-00746-19-00.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Fauchais, P.L., Heberlein, J.V.R., and Boulos, M.I., Thermal Spray Fundamentals: From Powder to Part, New York: Springer-Verlag, 2014.CrossRefGoogle Scholar
  2. 2.
    Berger, L.M., Application of hardmetals as thermal spray coatings, Int. Int. J. Refract. Met. Hard Mater., 2015, vol. 49, pp. 350–364.CrossRefGoogle Scholar
  3. 3.
    Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: poluchenie, svoistva, primenenie (Titanium Carbide: Production, Properties, and Application), Moscow: Metallurgiya, 1987.Google Scholar
  4. 4.
    Solonenko, O.P., Chesnokov, A.E., and Smirnov, A.V., Production and plasma spraying of cermet powders TiCNiCr with given volume content of carbide ultrafine inclusions, ITSC 2014 International Thermal Spray Conf., Barcelona, Spain, May 21–23, 2014, Red Hook, NY: Curran Associates, 2014, pp. 373–378.Google Scholar
  5. 5.
    Kalita, V.I. and Komlev, D.I., Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi (Plasma Coatings with Nanocrystalline and Amorphous Structure), Moscow: Biblioteka, 2008.Google Scholar
  6. 6.
    Jõeleht, M., Pirso, J., Juhani, K., Viljus, M., and Traksmaa, R., The influence of high energy milling and sintering parameters on reactive sintered (Ti, Mo)C–Ni cermets, J. Alloys Compd., 2015, vol. 636, pp. 381–386.CrossRefGoogle Scholar
  7. 7.
    Hsieh, J.H., Tan, A.L.K., and Zeng, X.T., Oxidation and wear behaviors of Ti-based thin films, Surf. Coat. Technol., 2006, vol. 201, pp. 4094–4098.CrossRefGoogle Scholar
  8. 8.
    Hsieh, J.H., Wu, W., Li, C., Yu, C.H., and Tan, B.H., Deposition and characterization of Ti(CNO) coatings by unbalanced magnetron sputtering, Surf. Coat. Technol., 2003, vols. 163–164, pp. 233–237.Google Scholar
  9. 9.
    Rajabi, A., Ghazali, M.J., and Daud, A.R., Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet—a review, Mater. Des., 2015, vol. 67, pp. 95–106.CrossRefGoogle Scholar
  10. 10.
    Umanskii, A.P., Storozhenko, M.S., Hussainova, I.G., Terentiev, A.E., Kovalchenko, A.M., and Antonov, M.M., Mechanisms of plasma-sprayed NiCrSiB–20 wt % TiB2 coating, Powder Metall. Met. Ceram., 2015, vol. 53, nos. 11–12, pp. 663–671.Google Scholar
  11. 11.
    Huang, S., Sun, D., Wang, W., and Xu, H., Microstructures and properties of in-situ TiC particles reinforced Ni-based composite coatings prepared by plasma spray welding, Ceram. Int., 2015, vol. 41, pp. 12202–12210.CrossRefGoogle Scholar
  12. 12.
    Kurakova, N.V., Molokanov, V.V., Kalita, V.I., Komlev, D.I., and Umnov, P.P., Formation of plasma coatings with nano and amorphous structure, Fiz. Khim. Obrab. Mater., 2008, no. 4, pp. 18–25.Google Scholar
  13. 13.
    Kalita, V.I., Yarkin, V.V., Kasimtsev, A.V., and Lubman, G.Yu., Formation of nanosized hardening phases in plasma-sprayed steel and iron coatings, Fiz. Khim. Obrab. Mater., 2006, no. 5, pp. 29–40.Google Scholar
  14. 14.
    Kalita, V.I., Povorova, K.B., Komlev, D.I., Yarkin, V.V., Kasimtsev, A.V., Lubman, G.U., and Antonova, A.V., Physical and mechanical properties of plasma cermet coatings TiC–NiMo, Fiz. Khim. Obrab. Mater., 2007, no. 4, pp. 29–36.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations