Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 3, pp 713–720 | Cite as

Measurement of Hydrogen Diffusion in Zirconium Alloys by the Radioluminography Method

  • B. V. IvanovEmail author
  • A. S. AnikinEmail author
  • A. N. BukinEmail author
  • Ya. V. SergeechevaEmail author
  • I. G. LesinaEmail author
  • N. S. SaburovEmail author
  • Yu. N. DevyatkoEmail author
  • O. V. KhomyakovEmail author
NEW METHODS OF TREATMENT AND PRODUCTION OF MATERIALS WITH REQUIRED PROPERTIES
  • 2 Downloads

Abstract

A method for obtaining the quasi-one-dimensional distribution of tritium in zirconium alloys was developed. Various conditions of saturation of samples with tritium were analyzed and distributions of tritium concentration corresponding to the saturation conditions were measured. An algorithm for restoring of the diffusion coefficient of hydrogen in zirconium alloys by the radioluminography method was developed. The temperature dependence of the hydrogen diffusion in E110 alloy was constructed.

Keywords:

radioluminography hydrogen tritium diffusion coefficient hydrogenation zirconium alloy zirconium oxide 

Notes

REFERENCES

  1. 1.
    Couet, A., Motta, A.T., and Comstock, R.J., Hydrogen pickup measurements in zirconium alloys: relation to oxidation kinetics, J. Nucl. Mater., 2014, vol. 451, pp. 1–13.CrossRefGoogle Scholar
  2. 2.
    Shmakov, A.A., Kalin, B.A., Anan’in, V.M., Bulanov, A.A., Pimenov, Yu.V., Timoshin, S.N., Novikov, V.V., and Markelov, V.A., Maximum solubility of hydrogen in zirconium alloys, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., 2006, no. 1 (66), pp. 366–370.Google Scholar
  3. 3.
    Manning, J.R., Diffusion Kinetics for Atoms in Crystals, Princeton, NJ: D. Van Nostrand, 1968.CrossRefGoogle Scholar
  4. 4.
    Allen, T.R., Konings, R.J.M., and Motta, A.T., Corrosion of zirconium alloys, in Comprehensive Nuclear Materials, Konings, R.J.M., Ed., Amsterdam: Elsevier, 2012, vol. 5, pp. 49–68.Google Scholar
  5. 5.
    Sawatzky, A., The diffusion and solubility of hydrogen in the alpha phase of zircaloy-2, J. Nucl. Mater., 1960, vol. 2, no. 1, pp. 62–68.CrossRefGoogle Scholar
  6. 6.
    Mallett, M.W. and Albretcht, W.M., Low-pressure solubility and diffusion of hydrogen in zirconium, J. Electrochem. Soc., 1957, vol. 104, no. 3, pp. 142–146.CrossRefGoogle Scholar
  7. 7.
    Kearns J.J., Diffusion coefficient of hydrogen in alpha zirconium zircaloy-2 and zircaloy-4, J. Nucl. Mater., 1972, vol. 43, pp. 330–338.CrossRefGoogle Scholar
  8. 8.
    Grosse, M., van der Berg, M., Goulet, C., and Kaestner, A., In-situ investigation of hydrogen diffusion in Zircaloy-4 by means of neutron radiography, J. Phys.: Conf. Ser., 2012, vol. 340, pp. 012106–012114.Google Scholar
  9. 9.
    Khatamian, D. and Manchester, W.D., An ion beam study of hydrogen diffusion in oxides of Zr and Zr–Nb (2.5 wt%) I. Diffusion parameters for dense oxide, J. Nucl. Mater., 1989, vol. 166, pp. 300–306.CrossRefGoogle Scholar
  10. 10.
    Khatamian, D., Hydrogen diffusion in oxides formed on surfaces of zirconium alloys, J. Alloys Compd., 1997, vols. 253–254, pp. 471–474.Google Scholar
  11. 11.
    Khatamian, D., Diffusion of hydrogen in single crystals of monoclinic-ZrO2 and yttrium stabilized cubic zirconia, Defect Diffus. Forum, 2010, vols. 297–301, pp. 631–640.Google Scholar
  12. 12.
    Lim, B.H., Hong, H.S., and Lee, K.S., A study on the effects of dissolved hydrogen on zirconium alloys corrosion, J. Nucl. Mater., 2014, vol. 444, pp. 349–355.CrossRefGoogle Scholar
  13. 13.
    Shmakov, A. A., Smirnov, E. A., and Bruchertseifer, H., Distribution and diffusion of hydrogen in zirconiumbased oxidized alloys, At. Energy, 1998, vol. 5, no. 3, pp. 675–678.CrossRefGoogle Scholar
  14. 14.
    Austin, J.H., Elleman, T.S., and Verghese, K., Tritium diffusion in zircaloy-2 in the temperature range –78 to 204°C, J. Nucl. Mater., 1974, vol. 51, pp. 321–329.CrossRefGoogle Scholar
  15. 15.
    Hatano, Y., Hitaka, R., Sugisaki, M., and Hayashi, M., Transport mechanism of hydrogen through oxide film formed on zircaloy-4, J. Radioanal. Nucl. Chem., 1999, vol. 239, no. 3, pp. 445–448.CrossRefGoogle Scholar
  16. 16.
    Kunz, W., Münzel, H., and Kunz, U., Tritium release from Zircaloy-2: Dependence on temperature, surface conditions and composition of surrounding medium, J. Nucl. Mater., 1985, vol. 136, pp. 6–15.CrossRefGoogle Scholar
  17. 17.
    Takagi, I., Une, K., Miyamura, S., and Kobayashi, T., Deuterium diffusion in steam-corroded oxide layer of zirconium alloys, J. Nucl. Mater., 2011, vol. 419, pp. 339–346.CrossRefGoogle Scholar
  18. 18.
    McIntyre, N.S., Davidson, R.D., Weisener, C.G., Warr, B.D., and Elmoselhi, M.B., SIMS studies of hydrogen diffusion through oxides on Zr-Nb alloy, Surf. Interface Anal., 1991, vol. 17, pp. 757–763.CrossRefGoogle Scholar
  19. 19.
    Rivkis, L.A., Prykina, I.G., Filin, V.M., Bulkin, V.I., and Andreev, B.M., Radioluminography measurement of tritium distribution, At. Energy, 2008, vol. 104, no. 3, pp. 218–223.CrossRefGoogle Scholar
  20. 20.
    Alefeld, G., Cotts, R.M., Kehr, K.W., Kronmüller, H., Peisl, H., Seeger, A., Sköld, K., Springer, T., Switendick, A.C., Völkl, J., Wagner, F.E., Wagner, H., Wallace, W.E., and Wartmann, G., Hydrogen in Metals I: Basic Properties, New York: Springer-Verlag, 1978.CrossRefGoogle Scholar
  21. 21.
    Greger, G.U., Münzel, H., Kunz, W., and Schwierczinski, A., Diffusion of tritium in zircaloy-2, J. Nucl. Mater., 1980, vol. 88, pp. 15–22.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.High Technology Research Institute of Inorganic MaterialsMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations