Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1237–1242 | Cite as

Improvement of the Approach to Predict the Fracture Toughness of Irradiated Anticorrosive Cladding for WWER-Type Reactors

  • A. J. MinkinEmail author
  • A. M. Morozov
  • V. I. Smirnov

Abstract—The paper presents the results of experimental investigations on the fracture toughness of anticorrosive cladding for the reactor pressure vessel of WWER-type reactors after irradiation in a range from 0 to 1.8 × 1020 neutron/cm2. On the basis of these data and results obtained earlier, the fracture toughness is derived by statistical analysis methods as a function of neutron fluence and test temperature.


anticorrosive cladding irradiation fracture toughness prediction 



  1. 1.
    Margolin, B.Z., Shvetsova, V.A., Prokoshev, O.Yu., Kursevich, I.P., Smirnov, V.I., and Minkin, A.I., Characteristics of anticorrosive surfacing for calculation of the resistance to brittle fracture of reactor vessel material, Vopr. Materialoved., 2005, no. 2 (42), pp. 186–213.Google Scholar
  2. 2.
    Minkin, A.J., Margolin, B.Z., Kostylev, V.I., and Smirnov, V.I., Forecasting of conservative JR-curves for the material of anticorrosive surfacing of WWER reactor vessel shells taking into account the influence of neutron irradiation, Vopr. Materialoved., 2006, no. 3 (46), pp. 91–100.Google Scholar
  3. 3.
    Radiation Embrittlement of Reactor Vessel Materials. United States Regulatory Commission, Regulatory Guide V. 1.99 (Revision 2), Rockville: US Nucl. Regul. Com., 1988.Google Scholar
  4. 4.
    Prokoshev, O.Yu., Effect of technological and operational factors on embrittlement of anticorrosive cladding of WWER-type reactor vessels, Extended Abstract of Cand. Sci. (Eng.) Dissertation, St. Petersburg: Prometey, 2005.Google Scholar
  5. 5.
    Haggag, F.M. and Nanstad, R.K., Effect of Thermal Aging and Neutron Irradiation on the Mechanical Properties of Three-Wire Stainless Steel Weld Overlay Cladding, Washington, DC: Nucl. Regul. Com., 1997.CrossRefGoogle Scholar
  6. 6.
    ASTM E1820-18: Standard Test Method for Measurement of Fracture Toughness, West Conshohocken, PA: ASTM Int., 2018.Google Scholar
  7. 7.
    Minkin A.J., Margolin B.Z., Smirnov V.I., and Sorokin A.A., Improvement of a model to predict static fracture toughness of austenitic materials under neutron irradiation, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 6, pp. 617–625.CrossRefGoogle Scholar
  8. 8.
    Hellan, K., Introduction to Fracture Mechanics, New York: McGraw-Hill, 1984.Google Scholar
  9. 9.
    Sachs, L., Statistische Auswertungsmethoden, Berlin: Springer-Verlag, 1972.CrossRefGoogle Scholar
  10. 10.
    Hahn, G.J. and Shapiro, S.S., Statistical Models in Engineering, New York: Wiley, 1967.Google Scholar
  11. 11.
    De Vries, M.I., Fatigue crack growth and fracture toughness properties of low fluence neutron-irradiated type 316 and type 304 stainless steels, 13th Int. Symp. “Influence of Radiation on Material Properties,” Philadelphia, Pa: ASTM Int., 1987, pp. 174–190.Google Scholar
  12. 12.
    Kiselevskii, V.N., Change in static crack resistance of austentitic steels and alloys with radiation damage (review), Strength Mater., 1991, vol. 23, no. 7, pp. 711–720.CrossRefGoogle Scholar
  13. 13.
    Little, E.A., Fracture mechanics evaluations of neutron irradiated type 321 austenitic steel, J. Nucl. Mater., 1986, vol. 139, pp. 261–276.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Center Kurchatov Institute—CRISM PrometeySt. PetersburgRussia

Personalised recommendations