Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1165–1168 | Cite as

Effect of Boron Microalloying on the Structure and Properties of a Welded Joint Made of a Flux-Cored Wire for Welding of Flat-Rolled High-Strength Steel Plates with a Standard Yield Stress of 750 MPa

  • P. V. MelnikovEmail author
  • V. V. Gezha
  • G. D. Motovilina
  • V. A. Mogilnikov

Abstract—The effect of the boron microalloying on the structure and mechanical properties of a weld of high-strength steel with a standard yield stress of 750 MPa has been studied. On the basis of the results, a flux-cored wire of brand 48PP-69 has been developed.


flux-cored wire microalloying of welded joint semiautomatic welding with shielding gas 



The experimental studies were carried out on the equipment of the Center for Collective Use of Scientific Equipment Composition, Structure, and Properties of Structural and Functional Materials of the National Research Center Kurchatov Institute—Central Research Institute of Structural Materials Prometey with the financial support of the Russian Ministry of Education and Science under agreement no. 14.595.21.0004 (unique identification no. RFMEFI59517X0004).


  1. 1.
    Grabin, V.F., Metallovedenie svarki plavleniem (Metal Science of Welding by Metling), Kiev: Naukova Dumka, 1982.Google Scholar
  2. 2.
    Pokhodnya, I.K., Orlov, L.N., shevchenko, G.A., and Shlepakov, V.N., Effect of alloying on the mechanical properties of welded joints from powdered wires, Avtom. Svarka, 1985, no. 7 (388), pp. 10–11.Google Scholar
  3. 3.
    Evans, G.M., Microstructure and properties of ferritic steel welds containing Al and Ti, Weld. J., 1995, vol. 74, no. 8, pp. 249–261.Google Scholar
  4. 4.
    Khayakava, N., Sakaguti, S., Kavabata, F., Okatsu, M., Ota, M., Nisiyama, S., Nagatani, K., and Isizaki, K., RF Patent 2434070, Byull. Izobret., 2011, no. 32, p. 26.Google Scholar
  5. 5.
    Fainberg, L.I., Rybakov, A.A., Alimov, A.N., and Rozert, R., Microalloying of joints with titanium and boron in multi-arc welding of large-diameter gas-oil pipes, Avtom. Svarka, 2007, no. 5, pp. 20–25.Google Scholar
  6. 6.
    Podgaetskii, V.V., Effect of the chemical composition of the weld on its microstructure and mechanical properties, Avtom. Svarka, 1991, no. 2, pp. 1–9.Google Scholar
  7. 7.
    Oerlikon Schweisstechnik, Consumables. https://www. Accessed March 15, 2018.Google Scholar
  8. 8.
    Drahtwarenfabrik-Drahtzug Stein, Materialien und Verfahren. materialien-und-verfahren/. Accessed March 15, 2018.Google Scholar
  9. 9.
    Stainless Steel Welding: ESAB Technical Handbook. Accessed March 15, 2018.Google Scholar
  10. 10.
    Makarenko, V.D., Belyaev, V.A., Prokhorov, N.N., Shatilo, S.P., and Chernov, V.Yu., Effect of modifying additives on the mechanical and viscoplastic properties of welded joints of oil and gas pipelines, Svar. Proizvod., 2001, no. 5, pp. 9–13.Google Scholar
  11. 11.
    Houdremont, E., Einführung in die Sonderstahlkunde, Berlin: Springer-Verlag, 1935.CrossRefGoogle Scholar
  12. 12.
    Burkhard, J., Lau, T., North, T.H, and L’Esperance, G., Effect of aluminum on the Ti–O–B–N balance in submerged arc welding, Weld. J., 1988, vol. 67, no. 8, pp. 25–30.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. V. Melnikov
    • 1
    Email author
  • V. V. Gezha
    • 1
  • G. D. Motovilina
    • 1
  • V. A. Mogilnikov
    • 1
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia

Personalised recommendations