Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1198–1209 | Cite as

Influence of Neutron Irradiation and Post-Irradiation Annealing on Mechanical Properties and Fracture Toughness of the Anticorrosive Cladding for VVER-Type Reactors: Part 1. Mechanisms of Embrittlement and Recovery of Cladding Properties

  • B. Z. MargolinEmail author
  • A. M. Morozov
  • A. Ya. Varovin
  • V. I. Kostylev
  • L. A. Belyaeva
  • V. A. Potapova
  • V. I. Smirnov
  • O. Yu. Prokoshev
  • S. N. Petrov
RADIATION MATERIALS SCIENCE
  • 1 Downloads

Abstract—The influence of neutron irradiation and post-irradiation annealing on the fracture toughness of anticorrosive cladding material for reactor pressure vessels with different phosphorus and δ-ferrite content was investigated. The effect of the annealing temperature on the degree of degradation and recovery of the weld metal was considered. The processes during annealing exerting both positive and negative effects on recovery of the cladding properties were studied. The results of the research can be used for justification of the resistance to brittle fracture of reactor pressure vessels after annealing.

Keywords:

reactor pressure vessel anticorrosive cladding post-irradiation annealing resistance against irradiation embrittlement 

Notes

ACKNOWLEDGMENTS

These studies were carried out within the framework of agreements with JSC Concern Rosenergoatom on the equipment of the laboratory of the Test and Technological Complex of Irradiated and Radionuclide Materials and the Center for Collective Use Composition, Structure, and Properties of Structural and Functional Materials of the National Research Center Kurchatov Institute—CRISM Prometey.

REFERENCES

  1. 1.
    RD EO 1.1.3.99.0871–2012. Metodika rascheta na soprotivlenie khrupkomu razrusheniyu korpusov AES s VVER-1000 pri prodlenii sroka ekspluatatsii do 60 let (RD EO 1.1.3.99.0871–2012: Procedure of Calculation of Brittle Fracture Resistance of RPV for NPP with WWER-1000 under Operation up to 60 Years), Moscow: Rosenergoatom, 2012.Google Scholar
  2. 2.
    Erak, D., Gurovich, B., Shtrombakh, Ya., and Zhurko, D., Degradation and recovery of mechanical properties of VVER-1000 pressure vessel materials, Proc. Fontevraud 7th Int. Symp., Avignon, France, September 26–30, 2010, Paris: Soc. Fr. Energ. Nucl., 2010, no. O12-A096-T01.Google Scholar
  3. 3.
    PNAE G-7-010–89. Pravila i normy v atomnoi energetike. Svarnye soedineniya i naplavki. Pravila kontrolya (PNAE G-7-010–89: Rules and Standards in Nuclear Industry. Welded Joints and Depositions. Inspection Rules), Moscow: Energoatomizdat, 1991.Google Scholar
  4. 4.
    Medovar, B.I., Svarka khromonikelevykh austenitnykh stalei (Welding of Chromium-Nickel Austenitic Steels), Moscow: Mashinostroenie, 1958.Google Scholar
  5. 5.
    Kakhovskii, N.I., Svarka nerzhaveyushchikh stalei (Welding of Stainless Steels), Kiev: Tekhnika, 1968.Google Scholar
  6. 6.
    Kravtsov, T.G., Elektrodugovaya naplavka elektrodnoi lentoi (Electric Arc Electrode-Strip Cladding), Moscow: Mashinostroenie, 1978, p. 168.Google Scholar
  7. 7.
    Khasui, A. and Morigaki, O., Naplavka i napylenie (Surfacing and Spraying), Moscow: Mashinostroenie, 1985.Google Scholar
  8. 8.
    Badanin, V.I., Ignatov, V.A., Kursevich, I.P., Nikolaev, V.A., Rybin, V.V., and Timofeev, B.T., Strength against brittle fracture of austenitic-ferritic steel, deposited on 15Kh2MFA steel, Avtom. Svarka, 1989, no. 3, pp. 4–7.Google Scholar
  9. 9.
    Kopel’man-Serpukhova, Z.I. and Shamanin, M.V., Influence of chromium and molybdenum on thermal embrittlement of austenitic-ferritic deposited metal, Svarka, 1962, no. 5, pp. 54–60.Google Scholar
  10. 10.
    Karasik, N.Ya. and Shlepyanova, N.E., Chemical composition and rate of formation of the σ phase in the deposited metal 1Kh25N13, Avtom. Svarka, 1964, no. 2, pp. 38–42.Google Scholar
  11. 11.
    Badanin, V.I., Ignatov, V.A., Kursevich, I.P., Nikolaev, V.A., and Rybin, V.V., Radiation embrittlement of chromium-nickel austenitic materials with low content of δ‑ferrite, Trudy II mezhdunarodnoi konferentsii “Radiatsionnoe vozdeistvie na materialy termoyadernykh reaktorov,” 21–24 sentyabrya 1992 g. (Proc. II Int. Conf. “Radiation Impact on Materials of Thermonuclear Reactors,” September 21–24, 1992), St. Petersburg, 1992, pp. 128–147.Google Scholar
  12. 12.
    Nikolaev, V.A., Kursevich, I.P., Nesterova, E.V., Prokoshev, O.Yu., and Rybin, V.V., Brittleness of metal of anti-corrosion deposition on the cases of WW reactors, in Radiatsionnoe materialovedie i konstruktsionnaya prochnost’ reaktornykh materialov (Radiation Material Science and Construction Durability of Reactor Materials), St. Petersburg: Tsentr. Nauchno-Issled. Inst. Konstr. Mater. Prometei, 2002, pp. 232–251.Google Scholar
  13. 13.
    Houdremont, E., Handbuch der Sonderstahlkunde, Berlin: Springer-Verlag, 1943, vol. 1.CrossRefGoogle Scholar
  14. 14.
    Haggag, F.M. and Nanstad, R.K., Effect of Thermal Aging and Neutron Irradiation on the Mechanical Properties of Three-Wire Stainless Steel Weld Overlay Cladding, Report Nos. NUREG/CR-6363, ORNL/TM-13047, Washington, DC: Nucl. Regul. Comm., 1997.Google Scholar
  15. 15.
    Kursevich, I.P., Nikolaev, V.A., and Prokoshev, O.Yu., Influence of neutron irradiation and postradiation annealing on resistance to brittle metal fracture of anticorrosion surfacing of water-cooled reactors, Trudy IV mezhdunarodnoi konferentsii “Problemy materialovedeniya pri izgotovlenii i ekspluotatsii oborudovaniya AES” (Proc. IV Int. Conf. “Problems in Material Science in Manufacturing and Operation of NPP Equipment”), St. Petersburg, 1996, pp. 20–21.Google Scholar
  16. 16.
    Kursevich, I.P., Nikolaev, V.A., Prokoshev, O.Yu., Mikhaleva, E.I., Morozovskaya, I.A., and Nesterova, E.V., Influence of technological and operational factors on the mechanical properties of the metal of the anticorrosion coating of the cases of water-cooled reactors, Trudy VI mezhdunarodnoi konferentsii “Problemy materialovedeniya pri izgotovlenii i ekspluotatsii oborudovaniya AES” (Proc. VI Int. Conf. “Problems in Material Science in Manufacturing and Operation of NPP Equipment”), St. Petersburg, 2000, pp. 170–182.Google Scholar
  17. 17.
    Margolin, B.Z., Shvetsova, V.A., Prokoshev, O.Yu, Kursevich, I.P., Smirnov, V.I., and Minkin, A.I., Characteristics of anticorrosive surfacing for calculation of the resistance to brittle fracture of reactor case material, Vopr. Materialoved., 2005, no. 2 (42), pp. 186–213.Google Scholar
  18. 18.
    Utevskii, L.M., Otpusknaya khrupkost’ konstruktsionnykh stalei (Tempering Brittleness of Construction Steels), Moscow: Metallurgiya, 1961.Google Scholar
  19. 19.
    Kark, G.S., Metallovedenie i termicheskaya obrabotka spetsial’nykh stalei i splavov dlya energomashinostroeniya (Metal Science and Heat Treatment of Specific Steels and Alloys for Power and Machine Engineering), Moscow: Tsentr. Nauchno-Issled. Inst. Tekhnol. Mashinostr., 1978, no. 142, pp. 5–12.Google Scholar
  20. 20.
    Utevskii, L.M., Glikman, E.E., Kark, G.S., Obratimaya otpusknaya khrupkost’ stali i splavov zheleza (Reversible Tempering Brittleness of Steel and Iron Alloys), Moscow: Metallurgiya, 1987.Google Scholar
  21. 21.
    Williams, R.O., Further studies of the iron-chromium System, Trans. AIME, 1958, vol. 212, pp. 497–502.Google Scholar
  22. 22.
    Ustinovshchikov, Yu.I. and Pushkarev, B.E., Structural and phase transformations in ferrochromium alloys, Metally, 1999, no. 2, pp. 52–58.Google Scholar
  23. 23.
    Miller, M.K., Hyde, J.M., Hetherington, M.G., Cerezo, A., Smith, G.D.W., and Elliott, C.M., Spinodal decomposition in Fe–Cr alloys: Experimental study at the atomic level and comparison with computer models—I. Introduction and methodology, Acta Met. Mater., 1995, vol. 43, no. 9, pp. 3385–3401.CrossRefGoogle Scholar
  24. 24.
    Miller, M.K., Hyde, J.M., Hetherington, M.G., Cerezo, A., Smith, G.D.W., and Elliott, C.M., Spinodal decomposition in Fe–Cr alloys: Experimental study at the atomic level and comparison with computer models—II. Development of domain size and composition amplitude, Acta Met. Mater., 1995, vol. 43, no. 9, pp. 3403–3413.CrossRefGoogle Scholar
  25. 25.
    Miller, M.K., Hyde, J.M., Hetherington, M.G., Cerezo, A., Smith, G.D.W., and Elliott, C.M., Spinodal decomposition in Fe–Cr alloys: Experimental study at the atomic level and comparison with computer models—III. Development of morphology, Acta Met. Mater., 1995, vol. 43, no. 9, pp. 3415–3426.CrossRefGoogle Scholar
  26. 26.
    Kamenetskaya, D.S., Kaminskii, E.Z., Kolontsov, V.Yu., and Moish, Yu.V., Decomposition of high-purity solid ferrochromium solutions, Fiz. Met. Metalloved., 1976, vol. 46, no. 1, pp. 216–218.Google Scholar
  27. 27.
    Grobner, P.J., The 885°F (475°C) embrittlement of ferritic stainless steels, Metall. Trans., 1973, vol. 4, pp. 251–260.CrossRefGoogle Scholar
  28. 28.
    Hattestrand, M., Larsson, P., Chai, G.-C., Nilsson, J.-O., and Odqvist, J., Study of decomposition of ferrite in a duplex stainless steel cold worked and aged at 450–500°C, Mater. Sci. Eng., A, 2009, vol. 499, nos. 1–2, pp. 489–492.CrossRefGoogle Scholar
  29. 29.
    Sahu, J.K., Krupp, U., Ghosh, R.N., and Christ, H.-J., Effect of 475°C embrittlement on the mechanical properties of duplex stainless steel, Mater. Sci. Eng., A, 2009, vol. 508, nos. 1–2, pp. 1–14.CrossRefGoogle Scholar
  30. 30.
    Chandra, K., Sinhal, R., Kain, V., and Raja, V.S., Low temperature embrittlement of duplex stainless steel: Correlation between mechanical and electrochemical behavior, Mater. Sci. Eng., A, 2010, vol. 527, nos. 16–17, pp. 3904–3912.CrossRefGoogle Scholar
  31. 31.
    Golovin, I.S., Sarrak, V.I., Suvorova, S.O., and Dmitriev, V.B., Decomposition of solid interstitial solution and stratification of high-chromium ferrite, Fiz. Met. Metalloved., 1987, vol. 64, no. 3, pp. 540–548.Google Scholar
  32. 32.
    Borodin, O.V., Voevodin, V.N., Neklyudov, I.M., Ageev, V.S., and Medvedeva, E.F., Effect of heavy ion irradiation on the structure of steels and alloys with 10–13% Cr, Fiz. Khim. Obrab. Mater., 1994, no. 6, pp. 14–24.Google Scholar
  33. 33.
    Li, Z.-B., Lo, W.-Y., Chen, Y.E., et al., Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel, J. Nucl. Mater., 2015, vol. 466, pp. 201–207.CrossRefGoogle Scholar
  34. 34.
    Gal’perin, M.A., Ardentov, V.V., Ivanov, K.M., and Kopel’man-Serpukhova, Z.I., The effect of prolonged heat treatment on the physicomechanical properties of austenitic welded metal, Svarka, 1958, no. 1, pp. 75–85.Google Scholar
  35. 35.
    Zemzin, V.N. and Petrov, G.L., Influence of the ferrite phase on the properties of austenitic welded metal, Svar. Proizovd., 1967, no. 5, pp. 6–8.Google Scholar
  36. 36.
    Ivanov, K.M., Effect of aging temperature and cooling rate on embrittlement of austenitic-ferritic welded metals, Svarka, 1961, no. 4, pp. 91–107.Google Scholar
  37. 37.
    Ivanov, K.M., Influence of alloying elements on mechanical properties of austenitic-ferritic welded metals, Svarka, 1968, no. 11, pp. 45–66.Google Scholar
  38. 38.
    Zaks, I.A., Effect of thermal treatment and prolonged heating on ferritic-austenitic seams, Svar. Proizovd., 1961, no. 7, pp. 6–9.Google Scholar
  39. 39.
    Ardentov, V.V., Ivanova, T.I., and Mladzievskii, K.K., The structure and properties of metal welded under the flux layer by a stainless steel strip electrode, Svarka, 1961, no. 4, pp. 158–167.Google Scholar
  40. 40.
    Kopel’man-Serpukhova, Z.I., Ardentov, V.V., and Komarova, N.P., Welding wire for automatic welding of anticorrosion protection of ships, Svarka, 1959, no. 2, pp. 77–83.Google Scholar
  41. 41.
    Kopel’man-Serpukhova, Z.I., Ardenov, V.V., and Komarova, N.P., Automatic welding of 1Kh18N9T steel with EI-898 wire, Svarka, 1960, no. 3, pp. 100–109.Google Scholar
  42. 42.
    Ardentov, V.V., Makarova, V.I., Petrov, G.L., and Starets, E.E., Regulation of the content of the ferrite phase in the weld metal from austenitic chromium-nickel-molybdenum electrodes, Svarka, 1961, no. 4, pp. 76–91.Google Scholar
  43. 43.
    Zhitnikov, N.P., Valovel’skii, D.E., Timofeev, D.B., Brusnitsin, M.Yu., and Timofeev, B.N., in Materialy nauchno-prakticheskoi konferentsii “Vliyanie rezhimov termicheskoi obrabotki na sluzhebnye svoistva metalla antikorrozionnoi naplavki” (Proc. Sci.-Pract. Conf. “Influence of Regimes of Thermal Treatment on Operational Properties of Metal of Anticorrosion Deposition”), Leningrad, 1989, pp. 86–92.Google Scholar
  44. 44.
    Timofeev, B.T. and Chernaenko, T.A., Influence of manufacturing technology on the properties of anticorrosion deposition: a review, Trudy VIII mezhdunarodnoi konferentsii “Problemy materialovedeniya pri izgotovlenii i ekspluotatsii oborudovaniya AES” (Proc. VIII Int. Conf. “Problems in Material Science in Manufacturing and Operation of NPP Equipment”), St. Petersburg, 2004, pp. 111–126.Google Scholar
  45. 45.
    Kopel’man-Serpukhova, Z.I. and Shamanin, M.V., Influence of some alloying elements on the properties of austenitic-ferritic welded metal, Svarka, 1964, no. 7, pp. 102–107.Google Scholar
  46. 46.
    ASTM E 1820–09 Standard test method for measurement of fracture toughness, in Annual Book of ASTM Standards, West Conshohocken, PA: ASTM Int., 2010.Google Scholar
  47. 47.
    MT 1.2.3.06.0102–2012. Metodika prognozirovaniya svoistv antikorrozionnoi naplavki dlya rascheta prochnosti korpusov reaktorov VVER-1000 s uchetom vliyaniya korrozionnoi sredy i oblucheniya na soprotivlenie zarozhdeniyu i razvitiyu treshchiny pri prodlenii sroka ekspluatatsii do 60 let (MT 1.2.3.06.0102–2012: Method of Forecasting of Properties of Anticorrosion Surfacing for Calculation of the Strength of WWER-1000 Reactor Cases Taking into Account the Impact of Aggressive environment and Irradiation on Resistance to Nucleation and Crack Growth in Case of Service Life Prolongation until 60 Years), Moscow, 2012.Google Scholar
  48. 48.
    RD EO 1.1.2.09.0789–2012. Metodika opredeleniya vyazkosti razrusheniya po rezul’tatam ispytanii obraztsov-svidetelei dlya rascheta prochnosti i resursa korpusov reaktorov VVER-1000 (RD EO 1.1.2.09.0789–2012: The Method for Determination of Destruction Viscosity according to the Tests of the Samples-Witnesses for Calculation of Durability and Capacity of WWER-1000 Reactors), Moscow, 2012.Google Scholar
  49. 49.
    GOST (State Standard) 25.506-85: Design, Calculation, and Strength Testing. Methods of Mechanical Testing of Metals. Determination of Fracture Toughness Characteristics under the Static Loading, Moscow, 1985.Google Scholar
  50. 50.
    Konobeevskii, S.T., Deistvie oblucheniya na materialy (Effect of Irradiation on Materials), Moscow: Atomizdat, 1967.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. Z. Margolin
    • 1
    Email author
  • A. M. Morozov
    • 1
  • A. Ya. Varovin
    • 1
  • V. I. Kostylev
    • 1
  • L. A. Belyaeva
    • 1
  • V. A. Potapova
    • 1
  • V. I. Smirnov
    • 1
  • O. Yu. Prokoshev
    • 1
  • S. N. Petrov
    • 1
  1. 1.National Research Kurchatov Institute—CRISM PrometeySt. PetersburgRussia

Personalised recommendations