Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1169–1174 | Cite as

Calculation of Thermal Processes around Moving Molten Pool Using Boundary Element Method

  • V. A. KarkhinEmail author
  • P. N. Khomich
  • O. V. Panchenko
  • S. Yu. Ivanov
WELDING AND ALLIED PROCESSES. WELDING CONSUMABLES AND TECHNOLOGIES

Abstract—A technique for the calculation of the steady-state temperature field in a solid part of a welded workpiece has been developed by using a moving weld pool size as input data and a boundary element method for solving the heat conduction problem. The technique allows one to calculate the effective power and thermal efficiency of a heat source. An example of a through-penetration arc welding with a tungsten electrode for the case of a 4-mm-thick aluminum alloy 1565chMU reveals the temperature gradient distributions and cooling rate at the pool boundary. A good agreement is observed between the calculated and experimental thermal cycles. The distribution of hardness in the cross section of a butt weld is presented.

Keywords:

arc welding aluminum alloy thermal conductivity boundary element method weld pool temperature field temperature gradient cooling rate 

Notes

REFERENCES

  1. 1.
    Kumar, A., Zhang, W., Kim, C.H., and Debroy, T., A smart bi-directional model of heat transfer and free surface flow in gas metal arc fillet welding for practicing engineers, in Mathematical Modeling of Weld Phenomena 7, Cerjak, H., Bhadeshia, H.K.D.H., and Kozeschnik, E., Eds., Graz: Tech. Univ. Graz, 2005, pp. 3–37.Google Scholar
  2. 2.
    Karkhin, V.A., Plochikhine, V.V., Ilyin, A.S., and Bergmann, H.W., Inverse modeling of fusion welding processes, Weld. World, 2002, vol. 46, nos. 11–12, pp. 2–13.CrossRefGoogle Scholar
  3. 3.
    Karkhin, V.A., Khomich, P.N., Ossenbrink, R., and Mikhailov, V.G., Determination of temperature field in laser welding, Svar. Proizvod., 2006, no. 10, pp. 3–6.Google Scholar
  4. 4.
    Karkhin, V.A., Teplovye protsessy pri svarke (Thermal Processes in Welding), St. Petersburg: Polytech. Univ., 2015, 2nd ed.Google Scholar
  5. 5.
    Makhnenko, V.I., Petun, L.A., Prilutskii, V.P., and Zamkov, V.M., Thermal processes near a moving weldpool bath, Avtom. Svarka, 1969, no. 11, pp. 1–6.Google Scholar
  6. 6.
    Radaj, D., Welding Residual Stresses and Distortion: Calculation and Measurement, Duesseldorf: DVS-Verlag, 2003.Google Scholar
  7. 7.
    Breev, V.K. and Karkhin, V.A., Analysis of the influence of the geometric shape of welded joints on the path of cracks and the parameters of fracture mechanics by the method boundary element, Avtom. Svarka, 1989, no. 1, pp. 11–18.Google Scholar
  8. 8.
    Hang, M. and Okada, A., Computation of GMAW welding heat transfer with boundary element method, Adv. Eng. Software, 1993, vol. 16, pp. 1–5.CrossRefGoogle Scholar
  9. 9.
    Ghassabzadeh, M., Ghassemi, H., and Nahali, M., Study of welding temperature history by dual reciprocity boundary element method, Modares Mech. Eng., 2011, vol. 11, no. 3, pp. 95–103.Google Scholar
  10. 10.
    Banerjee, P.K. and Butterfield, R., Boundary Element Methods in Engineering Science, London: McGraw-Hill, 1981.Google Scholar
  11. 11.
    Brebbia, C.A., Telles, J.C.F., and Wroubel, L.C., Boundary Element Techniques: Theory and Applications in Engineering, Berlin: Springer-Verlag, 1984.CrossRefGoogle Scholar
  12. 12.
    Zykov, S.A., Influence of construction and technological factors of welding on the properties of welded joints from aluminum alloys at cryogenic temperatures, Extended Abstract of Cand. Sci. (Eng.) Dissertation, St. Petersburg: Prometey Central Sci. Res. Inst. Struct. Mater., 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Karkhin
    • 1
    Email author
  • P. N. Khomich
    • 1
  • O. V. Panchenko
    • 1
  • S. Yu. Ivanov
    • 1
  1. 1.St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations