Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1020–1028 | Cite as

Concentration Redistribution of Alloying Elements in Pseudo-Alpha-Titanium Alloy under Elastoplastic Deformation

  • L. A. IvanovaEmail author
  • G. V. BenemanskayaEmail author
  • V. V. Travin
METAL SCIENCES. METALLURGY
  • 1 Downloads

Abstract

The paper studies redistribution of alloying elements (Al, V, Mo) in the pseudo-alpha-titanium structure under graded stretching until destruction of the sample. Local sections of the titanium structure and of the fracture surface have been scanned by electron microscopy and X-ray microanalysis. The change in the chemical and phase composition of the alloy has been compared with the initial state stimulated by deformation impact. The structural-phase state of the material under high plastic strains is metastable, fixed by the system of deformation defects of the crystal lattice.

Keywords:

pseudo-α-titanium alloy alloying elements stretching deformation structural-phase state 

Notes

REFERENCES

  1. 1.
    Ivanova, L.A., Travin, V.V., Benemanskaya, G.V., Makarenko, I.V., and Petrov, V.N., Evolution of the structure of a titanium alloy under elastoplastic loading of a sample, Vopr. Materialoved., 2016, no. 1, pp. 11–21.Google Scholar
  2. 2.
    Farber, V.N., Contribution of diffusion processes to structure formation in intense cold plastic deformation of metals, Met. Sci. Heat Treat., 2002, no. 8, pp. 3–9.Google Scholar
  3. 3.
    Skotnikova, M.A. and Ushkov, S.S., Choice of the final thermal treatment of two-phase hot-deformed semi-finished products from titanium alloys, Progr. Mater. Tekhnol., 1999, no. 3, pp. 91–98.Google Scholar
  4. 4.
    Skotnikova, M.A., Structural-concentration heterogeneity of solid solutions, in Sinergetika, struktura i svoistva materialov, samoorganizuyushchiesya tekhnologii (Synergetics, Structure and Properties of Materials, Self-Organizing Technologies), Tr. Inst. Metall. im. A.A. Baikova, Moscow, 1996, pp. 203–204.Google Scholar
  5. 5.
    Sagaradze, V.V., Diffusion transformations in steels due to cold deformation, Met. Sci. Heat Treat., 2008, vol. 50, nos. 9–10, pp. 422–429.CrossRefGoogle Scholar
  6. 6.
    Koloskov, V.N., Deryagin, A.I., Vil’danova, A.D., and Gapontsev, V.A., Concentration and structural transformations in austenitic chromium-nickel alloys based on iron under severe plastic deformation, Fiz. Mezomekh., 2006, vol. 9, no. 5, pp. 97–105.Google Scholar
  7. 7.
    Umanskii, Ya.S. and Skakov, Yu.A., Fizika metallov. Atomnoe stroenie metallov i splavov (Physics of Metals. Atomic Structure of Metals and Alloys), Moscow: Atomizdat, 1978.Google Scholar
  8. 8.
    Bokshtein, S.Z., Diffuziya i struktura metallov (Diffusion and Structure of Metals), Moscow: Metallurgiya, 1973.Google Scholar
  9. 9.
    Teitel’, E.I., Metlov, L.S., Gunderov, D.V., and Korznikov, A.V., On the structural and phase transformations in solids induced by severe plastic deformation, Phys. Met. Metallogr., 2012, vol. 113, no. 12, pp. 1162–1168.CrossRefGoogle Scholar
  10. 10.
    Ivanov, Yu.F., Kornet, E.V., and Gromov, V.E., Structural-phase transformations of hardened structural steel deformed by uniaxial compression, in Strukturno-fazovye sostoyaniya perspektivnykh metallicheskikh materialov (Structural-Phase States of Advanced Metal Materials), Gromov, V.E., Ed., Novokuznetsk: NPK, 2009, pp. 284–311.Google Scholar
  11. 11.
    Vasil’ev, L.S. and Korzinkov, A.V., Nonequilibrium cooperative phenomena and processes under intensive plastic deformation of metals and alloys. Part 1. Deformation-induced structural transformations, Deform. Razrushenie Mater., 2014, no. 3, pp. 2–11.Google Scholar
  12. 12.
    Gapontsev, V.A. and Koloskov, V.M., Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation, Met. Sci. Heat Treat., 2007, vol. 49, nos. 11–12, pp. 503–515.CrossRefGoogle Scholar
  13. 13.
    Rybin, V.V., Structural kinetic aspects of the physics of evolution of plastic deformation, Sov. Phys. J., 1991, vol. 34, no. 3, pp. 186–5198.CrossRefGoogle Scholar
  14. 14.
    Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva. Spravochnik (Composition, Structure, and Properties of Titanium Alloys: Handbook), Moscow: Vseross. Inst. Legk. Splavov, Mosk. Aviats. Tekhnol. Inst., 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Center Kurchatov Institute—CRISM PrometeySt. PetersburgRussia
  2. 2.Ioffe Physical-Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Kaluga Turbine Works (KTZ)KalugaRussia

Personalised recommendations