Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1044–1050 | Cite as

Development of Ni-Base Superalloy with Operating Temperature up to 800°C for Gas Turbine Disks

  • M. M. BakradzeEmail author
  • S. V. Ovsepyan
  • A. A. Buiakina
  • B. S. Lomberg
METAL SCIENCES. METALLURGY

Abstract—The results of development of new nickel-base superalloy having an operating temperature up to 800°C for gas turbine disks have been presented. Structures, mechanical properties, and phase transformations of six experimental compositions have been researched. Physical and chemical modeling has been used to make a right choice of an alloy; with parameters as composition equivalents (they were based on equations of nonpolarizing ionic radii). The highest level of strength, ductility, toughness, and heat resistance was exhibited at 750°C by the Ni–Co–Cr–W–Mo–Ta–Al–Ti–Nb experimental composition with the total of aluminum, titanium, and niobium equal to 10 wt % and containing 4 wt % of tantalum.

Keywords:

nickel-base superalloy alloy composition microstructure strengthening γ' phase mechanical properties heat treatment 

Notes

ACKNOWLEDGMENTS

The present investigation carried out in the framework of the “Strategic Directions of Development of Materials and Technologies for the Period up to 2030” has been performed according to clause 9.7: “High Temperature Alloys and Composite Materials Strengthened with Fibers and Refractory Metal Particles, Carbides, Nitrides, and Others and Abradable Seal Materials.”

REFERENCES

  1. 1.
    Kablov, E.N., Innovative developments of the All-Russian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030,” Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33.Google Scholar
  2. 2.
    Ospennikova, O.G., Strategy of development of special high-temperature alloys and steels, protective and thermal protective coatings, in 80 let. Aviatsionnye materialy i tekhnologii (The 80 Years—Aviation Materials and Technologies), Kablov, E.N., Ed., Moscow: Vseross. Inst. Aviats. Mater., 2012, pp. 19–36.Google Scholar
  3. 3.
    Kablov, E.N., Ospennikova, O.G., and Lomberg, B.S., Creation of modern heat-resistant materials and production technologies for aircraft engine building, Kryl’ya Rodiny, 2012, nos. 3–4, pp. 34–38.Google Scholar
  4. 4.
    Kablov, E.N., Ospennikova, O.G., and Lomberg, B.S., Development of construction materials and technologies for aircraft engines: present and future, Avtom. Svarka, 2013, no. 10, pp. 23–32.Google Scholar
  5. 5.
    Merrick, H., Raymond, C., and Prabir, R., US Patent 6468368, 2002.Google Scholar
  6. 6.
    Cao, W.-D., US Patent 6730264, 2004.Google Scholar
  7. 7.
    Mourer, D.P., Huron, E.S., Bain, K.R., Montero, E.E., Reynolds, P.L., and Schirra, J.J., US Patent 6521175, 2005.Google Scholar
  8. 8.
    Gabb, T.P., GaydaIgnacy, J., Telesmanm, I., and Kantzos, P.T., US Patent 6 974 508, 2002.Google Scholar
  9. 9.
    Backman, D.G., Bain, K.R., Gabb, T.P., Huron, E.S., Mourer, D.P., Reynolds, P.L., and Schirra, J.J., EP Patent 1195446, 2002.Google Scholar
  10. 10.
    Bain, K.R., Mourer, D.P., Di Domizio, R., Hanlon, T., Cretegny, L., and Wessman, A.E., US Patent 8992699, 2015.Google Scholar
  11. 11.
    Mourer, D.P. and Bain, K.R., US Patent 20110203707, 2011.Google Scholar
  12. 12.
    Reynolds, P.L., US Patent 8147749, 2012.Google Scholar
  13. 13.
    Murphy, B.D. and Wheeler, J., WO Patent 2010008790, 2010.Google Scholar
  14. 14.
    Mourer, D.P. and Wessman, A.E., WO Patent 2016053489, 2016.Google Scholar
  15. 15.
    Kablov, E.N., Lomberg, B.S., Markina, L.S., Ovsepyan, S.V., Limonova, E.N., Bakradze, M.M., and Chabina, E.B., RF Patent 2280091, 2006.Google Scholar
  16. 16.
    Kablov, E.N., Lomberg, B.S., Ovsepyan, S.V., Limo-nova, E.N., Bakradze, M.M., Chabina, E.B., and Vavilin, N.L., RF Patent 2365657, 2009.Google Scholar
  17. 17.
    Garibov, G.S., Vostrikov, A.V., Grits, N.M., Fedorenko, E.A., Kazberovich, A.M., Inozemtsev, A.A., Andreichenko, I.L., and Karyagin, D.A., RF Patent 2371495, 2009.Google Scholar
  18. 18.
    Garibov, G.S., Vostrikov, A.V., Grits, N.M., Fedorenko, E.A., Kazberovich, A.M., Vlasova, O.N., Inozemtsev, A.A., Andreichenko, I.L., and Karyagin, D.A., RF Patent 2368683, 2009.Google Scholar
  19. 19.
    Eremenko, V.I., Grits, N.M., Fedorenko, E.A., Kachanov, E.B., Garibov, G.S., and Vlasova, O.N., RF Patent 2294393, 2007.Google Scholar
  20. 20.
    Garibov, G.S., Vostrikov, A.V., Grits, N.M., Fedorenko, E.A., Kazberovich, A.M., Vlasova, O.N., Inozemtsev, A.A., and Andreichenko, I.L., RF Patent 2348726, 2009.Google Scholar
  21. 21.
    Eremenko, V.I., Grits, N.M., Fedorenko, E.A., Kachanov, E.B., Fatkullin, O.Kh., Garibov, G.S., Vlasova, O.N., Kuzmenko, M.L., Kolotnikov, M.E., Marchukov, E.Yu., Zubarev, G.I., Inozemtsev, A.A., Koryakovtsev, A.S., Katorgin, B.I., and Semenov, V.N., RF Patent 2257420, 2005.Google Scholar
  22. 22.
    Garibov, G.S., Grits, N.M., Inozemtsev, A.A., Vostrikov, A.V., Fedorenko, E.A., Andreichenko, I.L., Zubarev, G.I., and Karyagin, D.A., RF Patent 2410457, 2011.Google Scholar
  23. 23.
    Kachanov, E.B., Eremenko, V.I., Grits, N.M., Fedorenko, E.A., and Vlasova, O.N., RF Patent 2299919, 2007.Google Scholar
  24. 24.
    GOST (State Standard) 5632-2014: Stainless Steels and Corrosion Resisting, Heat-Resisting and Creep Resisting Alloys. Grades, Moscow: Standartinform, 2015.Google Scholar
  25. 25.
    GOST (State Standard) R 52802-2007: Palletized Nickel-Based Superalloys. Grades, Moscow: Standartinform, 2015.Google Scholar
  26. 26.
    Lomberg, B.S., Ovsepyan, S.V., and Bakradze, M.M., The new heat-resistant nickel alloy for gas turbine engines (GTE) and gas turbine devices (GTD), Materialovedenie, 2010, no. 7, pp. 24–28.Google Scholar
  27. 27.
    Naze, L., Augustins, L.I., Caron, P., Guedou, J.-Y., and Locq, D., EP Patent 1840232A1, 2009.Google Scholar
  28. 28.
    Hessell, S.J., Voice, W., James, A.W., Blackham, S.A., Small, C.J., and Winstone, M.R., US Patent 6132527, 2000.Google Scholar
  29. 29.
    Reed, R., Crudden, D., Raeisinia, B., and Hardy, M., EP Patent 2894234A1, 2016.Google Scholar
  30. 30.
    Hardy, M.C., Stone, H.J., Neumeier, S., Jones, N.G., and Christofidou, K., EP Patent 3042973A1, 2016.Google Scholar
  31. 31.
    Gu, Y., Yokokawa, T., Kobayashi, T., Osada, T., Fujioka, J., Harada, H., Nagahama, D., and Kikuchi, Y., US Patent 8961646B2, 2015.Google Scholar
  32. 32.
    Kablov, E.N., Lomberg, B.S., Moiseev, N.V., Ponomarenko, D.A., Razuvaev, E.I., Sklyarenko, V.G., Ovse-pyan, S.V., and Limonova, E.N., RF Patent 2301845, 2007.Google Scholar
  33. 33.
    Kablov, E.N., Lomberg, B.S., Sklyarenko, V.G., Ponomarenko, D.A., Moiseev, N.V., Razuvaev, E.I., Bubnov, M.V., and Limonova, E.N., RF Patent 2340702, 2008.Google Scholar
  34. 34.
    Sklyarenko, V.G., Lomberg, B.S., Malashenko, Yu.V., Koshelev, Yu.N., Kabanov, I.V., Kalenov, S.V., and Nekrasov, B.R., RF Patent 2371512, 2009.Google Scholar
  35. 35.
    Raymond, E.L., Menzies, R.G., Dyer, T.O., Link, B.A., Halter, R.F., Mechley, M.E., Visalli, F.M., and Srivatsa, S.K., US Patent 6932877, 2005.Google Scholar
  36. 36.
    Raymond, E.L. and Srivatsa, S.K., US Patent 6908519, 2005.Google Scholar
  37. 37.
    Prikhod’ko, E.V., Physico-chemical modeling of formation of the structure and properties of heat-resistant steels and alloys, in Zharoprochnye i zharostoikie stali na nikelevoi osnove (Heat Resistant Nickel-Based Steels and Alloys), Moscow: Nauka, 1984, pp. 4–11.Google Scholar
  38. 38.
    Ovsepyan, S.V., Composition optimization of heat-resistant nickel alloys, Aviats. Mater. Tekhnol., 2002, no. 3, pp. 3–8.Google Scholar
  39. 39.
    Ovsepyan, S.V., Lomberg, B.S., and Baburina, E.V., Calculation of the high-temperature strength of complexly alloyed nickel alloys using equations of the system of nonpolarized ionic radii, Met. Sci. Heat Treat., 1995, vol. 37, no. 6, pp. 226–228.CrossRefGoogle Scholar
  40. 40.
    Buiakina, A.A., Letnikov, M.N., Bakradze, M.M., and Shugaev, S.A., Effect of thermomechanical and heat treatment on the structure and properties of VZh177 alloy, Tr. Vseross. Inst. Aviats. Mater., 2016, no. 10, pp. 29–36.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. M. Bakradze
    • 1
    Email author
  • S. V. Ovsepyan
    • 1
  • A. A. Buiakina
    • 1
  • B. S. Lomberg
    • 1
  1. 1.All-Russian Scientific Research Institute of Aviation Materials (VIAM)MoscowRussia

Personalised recommendations