Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 813–816 | Cite as

Study of Linear Light Edge-Emitting Diodes Based on InP/InGaAsP/InP Heterostructure with the Crescent Active Region

  • M. G. Vasil’evEmail author
  • A. M. Vasil’ev
  • Yu. O. Kostin
  • A. A. Shelyakin
  • A. D. Izotov
Electronic Engineering Materials


Buried light edge-emitting diodes (LEDs) with a wide emission spectrum in the wavelength range of 1380–1420 nm were developed. The design of an edge LED with a channel in a substrate and with the crescent active region and blocking layers of InP/GaInAsP/p-n-p-n/ZnSe was presented. Coupling of LED with an optical single-mode fiber and a microlens on the end of an optical fiber was performed. The characteristics of LEDs based on mesa-stripe heterostructures InP/GaInAsP were investigated. The dependences of the output power and the LED emission spectra based on mesa-stripe heterostructures InP/InGaAsP/InP with the crescent active region and p-n-p-n/ZnSe structure blocking the leakage current on the stabilization temperature of the active element and the injection current were studied. The dependence of the output parameters on the emitter stabilization temperature was demonstrated, which enables the creation of devices based on such LEDs both with and without forced cooling. The opportunity to develop buried LEDs with the crescent active region and a low degree of emission spectrum modulation was shown. The possibility of the entry of up to 45% of the LED radiation into a single-mode optical fiber using microlenses produced by chemical etching and fusion of a fiber end in a high-voltage arc of a welding machine was demonstrated.


semiconductor heterostructures planar structures optoelectronics light-emitting diodes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ostermayer, F.W., Jr., Kohl, P.A., and Burton, R.H., Photoelectrochemical etching of integral lenses on GaInPAs/InP light-emitting diodes, Appl. Phys. Lett., 1983, vol. 43, pp. 642–644.Google Scholar
  2. 2.
    Burrus, C.A. and Miller, B.I., Small-area double heterostructure AlGaAs electroluminescent diode sources for optical fiber transmission lines, Opt. Commun., 1971, vol. 4, p. 307–309.CrossRefGoogle Scholar
  3. 3.
    Maksimov, A.D., Eistrikh-Geller, V.Yu., Marmalyuk, A.A., Ladugin, M.A., Bagaev, T.A., Gorlachuk, P.V., and Yarotskaya, I.V., A model for calculating the composition of GaAsxP1–x solid solutions under metalorganic vapor phase epitaxy conditions, Inorg. Mater., 2017, vol. 53, no. 4, pp. 369–375.CrossRefGoogle Scholar
  4. 4.
    Korkishko, Yu.N., Fedorov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., and Kostritskii, S.M., Interferometric closed-loop fiber-optic gyroscopes, Proc. SPIE, 2012, vol. 8351, pp. 83513L-1–83513L-8.CrossRefGoogle Scholar
  5. 5.
    Miya, T., Terunuma, Y., Hosaka, T., and Miyashita, T., Ultimate low-loss single-mode fibre at 1.55 μm, Electron. Lett., 1979, vol. 15, pp. 106–108.CrossRefGoogle Scholar
  6. 6.
    Svirin, A.V., Kiiko, Yu.I., Obruch, B.V., and Bogomolov, A.V., Spectral optical coherent tomography: principles and possibilities, Klin. Oftal’mol., 2009, no. 2, p. 50–53.Google Scholar
  7. 7.
    Genei, K., Tanioka, A., Suhara, H., and Chinen, K., High coupled power 1.3 μm edge-emitting light-emitting diode with a rear window and an integrated absorber, Appl. Phys. Lett., 1988, vol. 53, no. 13, pp. 1138–1140.CrossRefGoogle Scholar
  8. 8.
    Nagai, H., Noguchi, Y., and Sudo, S., High-power, high efficiency 1.3 μm superluminescent diode with a buried bent absorbing guide structure, Appl. Phys. Lett., 1989, vol. 54, no. 18, pp. 1719–1721.CrossRefGoogle Scholar
  9. 9.
    Kashima, Y., Kobayashi, M., and Takano, H., High output power GaInAsP/InP superluminescent diode at 1.3 μm, Electron. Lett., 1988, vol. 24, no. 24, pp. 1507–1508.CrossRefGoogle Scholar
  10. 10.
    Vasil’ev, M.G., Vasil’ev, A.M., Kostin, Yu.O., Shelyakin, A.A. and Izotov, A.D., Buried crescent InP/InGaAsP/InP on p-InP for linear edge-emitting diodes, Inorg. Mater., 2017, vol. 53, no. 11, pp. 1170–1173.CrossRefGoogle Scholar
  11. 11.
    Vasil’ev, M.G., Vasil’ev, A.M., and Shelyakin, A.A., Planar buried crescent InP/InGaAsP/InP heterostructure on p-InP, Inorg. Mater., 2008, vol. 44, no. 9, pp. 913–917.CrossRefGoogle Scholar
  12. 12.
    Vasil’ev, M.G., Vasil’ev, A.M., Golovanov, V.V., Izotov, A.D., and Shelyakin, A.A., Method for stepped etching of optical glass fibers, Russ. J. Inorg. Chem., 2016, vol. 61, no. 9, pp. 1160–1162.CrossRefGoogle Scholar
  13. 13.
    Casey, H.C.P., Jr. and Panish, M.B., Heterostructure Lasers, Part A: Fundamental Principles, New York: Academic, 1978.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. G. Vasil’ev
    • 1
    Email author
  • A. M. Vasil’ev
    • 1
  • Yu. O. Kostin
    • 1
  • A. A. Shelyakin
    • 1
  • A. D. Izotov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations