Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 873–878 | Cite as

Biomedical Materials Based on Polymer-Colloid Dispersion of Succinamide Chitosan-Sol of Silver Iodide

  • D. R. Valiyev
  • M. V. BazunovaEmail author
  • V. V. Chernova
  • A. S. Shurshina
  • E. I. Kulish
Materials for Ensuring Human Vital Activity and Environmental Protection


Polymer-colloid dispersions which are products of interaction of macromolecules with inorganic sol are of special interest among polymeric materials of biomedical function. The water-soluble sodium salt of chitosan suссinamide (SChT) having a complex of unique properties, among which is biocompatibility with body tissues, bacteriostaticity, ability to biodegradation, and so on, has been used as a basis for creation of film composite materials for biomedical purpose. Sol of silver iodide (AgI) known for its bactericidal properties has been used as colloidal dispersion. Microbiological studies have shown that films on the basis of polymer-colloidal dispersion SChT-AgI possess the expressed bactericidal action, while individual sol and individual SChT at the chosen concentration are characterized only by a bacteriostatic effect. It is revealed that polymer-colloidal dispersion SChT-AgI promotes an increase in resistance of components of blood to action of hemolytic agents. It is established that addition of AgI leads to an increase in tensile strength and decrease in elongation fracture. It is shown that the obtained films in all cases destruct much more slowly and to a lesser extent than an initial film of SChT when maintaining good water-absorbing ability.


polymer-colloid dispersions chitosan a film silver iodide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grishin, D.V. and Sokolov, N.N., Recombinant elastomeric proteins as a basis for the creation of new tissue engineering matrices, Izv. VUZov, Prikl. Khim. Biotekhnol., 2015, no. 2, pp. 24–36.Google Scholar
  2. 2.
    Peter, G. and Lotar, Sh., RF Patent 2323011, 2002.Google Scholar
  3. 3.
    Sokolova, S.I., Elizarova, V.M., Kovylina, O.S., and Volozhin, A.I., Use of the Lactobacterin immobilized on a collagen for the complex treatment of a chronic catarral ulitis of children with primary humoral immunodeficiency, Ross. Stomatol. Zh., 2007, no. 6, pp. 37–45.Google Scholar
  4. 4.
    Vasil’eva, T.M. and Chukhchin, D.G., The effect of beam-plasma modification of fibrin monomer on its biological properties, High Energy Chem., 2008, vol. 42, no. 5, pp. 404–408.CrossRefGoogle Scholar
  5. 5.
    Dmitrieva, L.A., Baisheva, V.I., Rainov, N.A., et al., Experimental substantiation of the use of enamel matrix protein and fibrin-fibronectin adhesive in surgery of the periodontium, Parodontologiya, 2007, no. 3, pp. 23–26.Google Scholar
  6. 6.
    Shtil’man, M.I., Polimery mediko-biologicheskogo naznacheniya (Polymers for Medical and Biological Purposes), Moscow: Akademkniga, 2006.Google Scholar
  7. 7.
    Vil’danova, R.R., Sigaeva, N.N., Kukovinets, O.S., et al., The modified hyaluronic acid and chitosan for receiving hydrogels, Vestn. Bashkir. Univ., 2016, no. 1, pp. 63–68.Google Scholar
  8. 8.
    Burlutskaya, O.I. and Rakhmatullin, R.R., Complex cosmetic composition hyaluronic acid + matrix peptides, Eksp. Klin. Dermatokosmetol., 2011, no. 4, pp. 41–43.Google Scholar
  9. 9.
    Zakharov, N.A., Ezhova, Zh.A., Koval’, E.M., et al., Hydroxyapatite-carboxymethyl cellulose nanocomposite biomaterial, Inorg. Mater., 2005, vol. 41, no. 5, pp. 509–515.CrossRefGoogle Scholar
  10. 10.
    Zinov’ev, E.V., Bartashevich, E.V., Prokhorenko, A.V., and Zharkov, A.V., Use of silver-containing creams and wound covers to improve the system of local treatment of wounds of patients with purulent-necrotic forms of a diabetic foot syndrome, Vestn. Novgorod. Gos. Univ. im. Yaroslava Mudrogo, 2010, no. 59, pp. 42–48.Google Scholar
  11. 11.
    Belov, A.A., Belova, E.L., and Filatov, V.N., The textile materials containing chitosan and a proteolytic complex from crab gepatopancreas for the medical purposes, Biomed. Khim., 2009, no. 1, pp. 61–67.Google Scholar
  12. 12.
    Slivkin, A.I., Lapenko, V.L., Arzamastsev, A.P., and Bolgov, A.A., Chitosan as a polymeric matrix for an immobilization of medicinal substances with antitubercular activity, Vopr. Biol., Med. Farm. Khim., 2009, no. 3, pp. 36–38.Google Scholar
  13. 13.
    Shurshina, A.S., Kulish, E.I., Kolesov, S.V., and Zakharov, V.P., Preparation of enzyme-containing chitosan films, Pharm. Chem. J., 2015, vol. 49, no. 3, pp. 196–198.CrossRefGoogle Scholar
  14. 14.
    Hench, L. and Jones, J., Biomaterials, Artificial Organs and Tissue Engineering, Boca Raton, Fl: CRC Press, 2005.CrossRefGoogle Scholar
  15. 15.
    Sitnikov, B.P., Shil’ko, S.V., Khusam, E.R., et al., Possible use of prostheses based on modified fluoroplastic with diamond-like nanocoating in ear surgery (experimental study), Vestn. Otorinolaringol., 2014, no. 3, pp. 20–23.Google Scholar
  16. 16.
    Iordanskii, A.L., Rogovina, S.Z., and Berlin, A.A., The current state and the prospective development of the nanoimplants containing medicinal substances, Obzor. Zh. Khim., 2013, no. 2, pp. 129–146.Google Scholar
  17. 17.
    Antonova, L.V., Sergeeva, E.A., Babich, O.O., et al., The study of the cardiotoxicity of products of hydrolytic degradation of tubular polymer matrices proposed as the small diameter vascular implant, Kompleksn. Probl. Serdechno-Sosudistykh Zabol., 2015, no. 3, pp. 6–11.Google Scholar
  18. 18.
    Zhiryakova, M.V. and Izumrudov, V.A., Controlled stability of a polymer-colloid complex in aqueoussaline solutions, Polym. Sci., Ser. A, 2008, vol. 50, no. 10, pp. 1057–1064.CrossRefGoogle Scholar
  19. 19.
    Ivanov, V.K., Polezhaeva, O.S., Shaporev, A.S., Baranchikov, A.E., Shcherbakov, A.B., and Usatenko, A.V., Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids, Russ. J. Inorg. Chem., 2010, vol. 55, no. 3, pp. 328–332.CrossRefGoogle Scholar
  20. 20.
    Chernova, V.V., Valiyev, D.R., Bazunova, M.V., and Kulish, E.I., Influence of the dispersed phase on the rheological behavior of polymer-colloidal dispersions based on sols of silver iodide and chitosan, Izv. Ufimsk. Nauch. Tsentra, Ross. Akad. Nauk, 2016, no. 1, pp. 96–98.Google Scholar
  21. 21.
    Venediktov, E.A., Padokhin, V.A., and Ganiev, R.F., Preparation and stabilization of silver nanoparticles in liquid water-soluble starch matrix, Dokl. Chem., 2010, vol. 431, no. 1, pp. 82–84.CrossRefGoogle Scholar
  22. 22.
    Tyukova, I.S., Safronov, A.P., Kotel’nikova, A.P., and Agalakova, D.Yu., Electrostatic and steric mechanisms of iron oxide nanoparticle sol stabilization by chitosan, Polym. Sci., Ser. A, 2014, vol. 56, no. 4, pp. 498–504.CrossRefGoogle Scholar
  23. 23.
    Lukuttsova, N.P., Postnikova, O.A., Pykin, A.A., et al., Effective use of nanodispersed titanium dioxide in photocatalysis, Vestn. Belgorod. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2015, no. 3, pp. 54–57.Google Scholar
  24. 24.
    Huang, H. and Yang, X., Chitosan mediated assembly of gold nanoparticles multilayer, Colloids Surf. A, 2003, vol. 226, nos. 1–3, pp. 77–86.CrossRefGoogle Scholar
  25. 25.
    Oh, K.S., Kim, R.S., Lee, J., et al., Gold/chitosan/pluronic composite nanoparticles for drug delivery, J. Appl. Polym. Sci., 2008, vol. 108, pp. 3239–3244.CrossRefGoogle Scholar
  26. 26.
    Yurmazova, T.A., Galanov, A.I., Savel’ev, G.G., et al., Magnetic carrier for doxorubicin and its chemical transformation in model biological fluids, Izv. Tomsk. Politekh. Univ., 2009, no. 3, pp. 50–54.Google Scholar
  27. 27.
    Akopdzhanov, A.G., Sergeev, A.I., Manvelov, E.V., et al., Pharmacological properties of nanoparticles of complex iron oxide as the contrast magnetic resonance agent, Eksp. Klin. Farmakol., 2010, no. 6, pp. 23–28.Google Scholar
  28. 28.
    Macdougall, I.C., Strauss, W.E., and McLaughlin, J., A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD, Clin. J. Am. Soc. Nephrol., 2014, vol. 9, no. 4, pp. 705–712.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bhattacharyya, S., Kudgus, R.A., Bhattacharyya, R., et al., Inorganic nanoparticles in cancer therapy, Pharm. Res., 2011, no. 2, pp. 237–259.CrossRefGoogle Scholar
  30. 30.
    Slivkin, A.I., Lapenko, V.L., Arzamastsev, A.P., and Bolgov, A.A., Aminoglucans as biologically active components of medicines: The review over 2000–2004, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2005, no. 2, pp. 73–87.Google Scholar
  31. 31.
    Bukina, Yu.A. and Sergeeva, E.A., Antibacterial properties and mechanism of bactericidal action of nanoparticles and silver ions, Vestn. Kazan. Tekhnol. Univ., 2012, no. 14, pp. 170–172.Google Scholar
  32. 32.
    Frolov, Yu.G. and Grodskii, A.S., Laboratornye raboty i zadachi po kolloidnoi khimii (Practical Manual on Colloid Chemistry), Moscow: Khimiya, 1986.Google Scholar
  33. 33.
    Chernova, V.V., Tuktarova, I.F., and Kulish, E.I., Enzymatic hydrolysis of chitosan films in water and physiological solution, Appl. Biochem. Microbiol., 2016, vol. 52, no. 5, pp. 525–530.CrossRefGoogle Scholar
  34. 34.
    Shamratova, V.G., Sharafutdinova, L.A., Khismatullina, Z.R., et al., The influence of ultrafine systems based on chitosan complexes and its derivatives with colloid particles of silver iodide on structural and functional properties of erythrocytes, Biomeditsina, 2015, no. 3, pp. 69–77.Google Scholar
  35. 35.
    Lipatov, Yu.S., Fizicheskaya khimiya napolnennykh polimerov (Physical Chemistry of the Filled Polymers), Moscow: Khimiya, 1977.Google Scholar
  36. 36.
    Biokhimiya: uchebnik dlya vuzov (Biochemistry: Manual for Higher Educational Institutions), Severin, E.S., Ed., Moscow: GEOTAR-Med, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. R. Valiyev
    • 1
  • M. V. Bazunova
    • 1
    Email author
  • V. V. Chernova
    • 1
  • A. S. Shurshina
    • 1
  • E. I. Kulish
    • 1
  1. 1.Bashkir State UniversityUfaRussia

Personalised recommendations