Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 890–899 | Cite as

Influence of Graphitization Conditions at 3000°C on Structural and Mechanical Properties of High-Modulus Polyacrylonitrile-Based Carbon Fibers

  • V. M. SamoilovEmail author
  • D. B. Verbets
  • I. A. Bubnenkov
  • N. N. Steparyova
  • A. V. Nikolaeva
  • E. A. Danilov
  • D. V. Ponomareva
  • E. I. Timoshchuk
General-Purpose Materials


The effect of the graphitization conditions at 3000°C on the crystal structure and properties of high-modulus polyacrylonitrile-based carbon fibers (CFs) is studied. It is shown that an increase in the temperature of CF processing from 1400 to 3000°C leads to a decrease in the tensile strength and an increase in Young’s modulus. However, an increase in the winding rate from 10 to 300 m/h during the synthesis of CFs at a fixed graphitization temperature of 3000°C leads to decreases in both the tensile strength and Young’s modulus. The crystal structure of the synthesized CFs is studied by the X-ray diffraction and Raman spectroscopy methods. It is shown that an increase in the thermal processing temperature from 1400 to 3000°C leads to a decrease in the d002 interlayer spacing and an increase in the crystallite size Lc. It is established by the Raman spectroscopy method that the ID/IG parameter (the ratio of the integral intensities of the D and G spectral bands) decreases at the same time, which is also characteristic of an increase in the degree of perfection of the CF crystal structure. On the contrary, an insignificant increase in the d002 interlayer spacing and a decrease in the Lc value are observed with an increase in the winding rate for CFs synthesized at a fixed graphitization temperature of 3000°C, while the ID/IG parameter in this case hardly changes. A detailed analysis of the shape of the (002) diffraction peak shows that, unlike CFs obtained at a winding rate of 10 m/h, CFs obtained at higher winding rates consist of at least two distinct structures of different degrees of graphitization. Further thermal treatment of these CFs at 2650°C under steady-state conditions leads to a significant decrease in the d002 spacing parameter and an increase in the Lc value. It is established from the measurements of the ID/IG ratio that radial inhomogeneity of the CF crystal structure over the cross section increases at higher winding rates, which is associated with inhomogeneous heat transfer in the filaments. It is concluded that high rates of heating to 3000°C have a negative effect on the structural and mechanical properties of CFs.


carbon fiber graphitization Raman spectroscopy X-ray diffraction microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simamura, S., Sindo, A., Kotsuka, K., Tsutiyama, N., Sato, T., Ito, E., Ikegami, K., Yamada, K., Sakamoto, A., Watanabe, E., Takeda, Kh., Isikava, T., Sasaki, V., and Abe, Y., Uglerodnye volokna (Carbon Fibers), Simamura, S., Ed., Moscow: Mir, 1987.Google Scholar
  2. 2.
    Morgan, P., Carbon Fibers and Their Composites, Boca Raton: CRC Press, 2005. ISBN 0-8247-0983-7.CrossRefGoogle Scholar
  3. 3.
    Park, S.-J., Carbon Fibers, Springer Series in Materials Science vol. 210, Dordrecht: Springer-Verlag, 2015.Google Scholar
  4. 4.
    Frank, E., Steudle, L.M., Ingildeev, D., Spörl, J.M., and Buchmeiser, M.R., Carbon fibers: Precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed. Engl., 2014, vol. 53, no. 21, pp. 5262–5298. doi 10.1002/anie.201306129CrossRefPubMedGoogle Scholar
  5. 5.
    Huang, X., Fabrication and Properties of Carbon Fibers. Materials, 2009, vol. 2, pp. 2369–2403. doi 10.3390/ma2042369Google Scholar
  6. 6.
    Bennett, S.C., Johnson, D.J., and Johnson, W., Strength structure relationships in PAN-based carbon fibres, J. Mater. Sci., 1983, vol. 18, pp. 3337–3347. doi 10.1007/BF00544159CrossRefGoogle Scholar
  7. 7.
    Sosedov, V.P. Svoistva konstrutsionnykh materialov na osnove ugleroda. Spravochnik (Properties of Carbon-Based Structural Materials: Handbook), Moscow: Metallurgiya, 1975.Google Scholar
  8. 8.
    Langford, J.I., A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function, J. Appl. Cryst., 1978, vol. 11, pp. 10–14.CrossRefGoogle Scholar
  9. 9.
    Tuinstra, F. and Koenig, J.L., Raman spectrum of graphite, J. Chem. Phys., 1970, vol. 53, pp. 1126–1130.CrossRefGoogle Scholar
  10. 10.
    Ferrari, A.C. and Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev., 2000, vol. 61, no. 20, pp. 95–107.CrossRefGoogle Scholar
  11. 11.
    Reich, S. and Thomsen, C., Raman spectroscopy of graphite, Philos. Trans. R. Soc., A, 2004, vol. 362, pp. 2271–2288.CrossRefGoogle Scholar
  12. 12.
    Cançado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L.N., Magalhães-Paniago, R., and Pimenta, M.A., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett., 2006, vol. 88, pp. 3106–3109.CrossRefGoogle Scholar
  13. 13.
    Varshavskii, V.Ya., Mayanov, E.P., Sviridov, A.A., and Gaberling, A.V., Polyacrylonitrile fibers and polyacrylonitrile-based carbon fibers as nanostructured materials, Kompoz. Nanostrukt., 2009, no. 4, pp. 19–27.Google Scholar
  14. 14.
    Naito, K., Tanaka, Y., Yang, J.M., and Kagawa, Y., Tensile and flexural properties of single carbon fibres, 17th Int. Conf. on Composite Materials (ICCM–17), July 27–31, 2009, Edinburgh, 2009.Google Scholar
  15. 15.
    Li, D., Wang, H., and Wang, X., Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization, J. Mater. Sci., 2007, vol. 42, pp. 4642–4649.CrossRefGoogle Scholar
  16. 16.
    Liu, F., Wang, H., Xue, L., Fan, L., and Zhu, Z., Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization, J. Mater. Sci., 2008, vol. 43, pp. 4316–4322.CrossRefGoogle Scholar
  17. 17.
    Cho, D., Yoon, S.B., Cho, C.W., and Park, J.K., Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers, Carbon Lett., 2011, vol. 12, no. 4, pp. 223–228.CrossRefGoogle Scholar
  18. 18.
    Gao, A., Su, C., Luo, S., Tong, Y., and Xu, L., Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment, J. Phys. Chem. Solids, 2011, vol. 72, no. 10, pp. 1159–1164.CrossRefGoogle Scholar
  19. 19.
    Xiao, H., Lu, Y., Zhao, W., and Qin, X., The effect of heat treatment temperature and time on the microstructure and mechanical properties of PAN-based carbon fibers, J. Mater. Sci., 2014, vol. 49, pp. 794–804.CrossRefGoogle Scholar
  20. 20.
    Churikov, V.V., Tyumentsev, V.A., Mayanov, E.P., and Podkopaev, S.A., Influence of temperature of thermomechanical treatment on the structure of carbon fiber, Vestn. Chelyab. Gos. Univ. Fiz., 2011, vol. 15, no. 10, pp. 11–14.Google Scholar
  21. 21.
    Fischbach, D.B., The kinetics and mechanism of graphitization, Chem. Phys. Carbon, 1971, vol. 7, pp. 1–106.Google Scholar
  22. 22.
    Fitzer, E. and Weisenburger, S., Kinetics of graphitization within the first minute of heat treatment, Carbon, 1976, vol. 14, no. 6, pp. 323–327.CrossRefGoogle Scholar
  23. 23.
    Heusch, C.A., Moser, H.-G., and Kholodenko, A., Direct measurements of the thermal conductivity of various pyrolytic graphite samples (PG, TPG) used as thermal dissipation agents in detector applications, Nucl. Instrum. Methods Phys. Res., Sect. A, 2002, vol. 480, pp. 463–469.Google Scholar
  24. 24.
    Johnson, D.J. and Tyson, C.N., The fine structure of graphitized fibres, J. Phys. D: Appl. Phys., 1969, vol. 2, no. 6, pp. 787–795.CrossRefGoogle Scholar
  25. 25.
    Burnay, S.G. and Sharp, J.V., Defect structure of PANbased carbon fibres, J. Microsc., 1973, vol. 97, nos. 1–2, pp. 153–163.CrossRefGoogle Scholar
  26. 26.
    Kobayashi, T., Sumiya, K., Fukuba, Y., Fujie, M., Takahagi, T., and Tashiro, K., Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements, Carbon, 2011, vol. 4, pp. 1646–1652.CrossRefGoogle Scholar
  27. 27.
    Li, W., Long, D., Miyawaki, J., Qiao, W., Ling, L., Mochida, I., and Yoon, S.-H., Structural features of polyacrylonitrile-based carbon fibers, J. Mater. Sci., 2012, vol. 47, no. 2, pp. 919–928.CrossRefGoogle Scholar
  28. 28.
    Zhou, G., Liu, Y., He, L., Guo, Q., and Ye, H., Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites, Carbon, 2011, vol. 49, pp. 2883–2892.CrossRefGoogle Scholar
  29. 29.
    Paris, O., Loidl, D., Mu Ėller, M, Lichtenegger, H., and Peterlik, H., Cross-sectional texture of carbon fibres analyzed by scanning microbeam X-ray diffraction, J. Appl. Cryst., 2001, vol. 34, pp. 473–479.Google Scholar
  30. 30.
    Diaz, A., Guizar-Sicairosa, V., Poeppel, A., Menzel, A., and Bunk, O., Characterization of carbon fibers using X-ray phase nanotomography, Carbon, 2014, vol. 67, pp. 98–103.CrossRefGoogle Scholar
  31. 31.
    Wang, H., Wang, Y., Li, T., Wu, S., and Xun, L., Gradient distribution of radial structure of PAN-based carbon fiber treated by high temperature, Progr. Nat. Sci.: Mater. Int., 2014, vol. 24, pp. 31–34.CrossRefGoogle Scholar
  32. 32.
    Li, D., Lu, C., Wu, G., Yang, Y., An, F., Fengc, Z., and Li, X., Structural heterogeneity and its influence on the tensile fracture of PAN-based carbon fibers, RSC Adv., 2014, vol. 4, pp. 60648–60651.CrossRefGoogle Scholar
  33. 33.
    Liu, X., Zhu, C., Guo, J., Liu, Q., Dong, H., Gu, Y., Liu, R., Zhao, N., Zhang, Z., and Xu, J., Nanoscale dynamic mechanical imaging of the skin-core difference: From PAN precursors to carbon fibers, Mater. Lett., 2014, vol. 128, pp. 417–420.CrossRefGoogle Scholar
  34. 34.
    Naraghi, M. and Chawla, S., Carbonized micro-and nanostructures: Can downsizing really help? Materials, 2014, vol. 7, pp. 3820–3833.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Samoilov
    • 1
    Email author
  • D. B. Verbets
    • 1
  • I. A. Bubnenkov
    • 1
  • N. N. Steparyova
    • 1
  • A. V. Nikolaeva
    • 1
  • E. A. Danilov
    • 1
  • D. V. Ponomareva
    • 1
  • E. I. Timoshchuk
    • 1
  1. 1.Research Institute for Graphite-Based Structural Materials NIIgrafitMoscowRussia

Personalised recommendations