Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 855–860 | Cite as

Shear Strength of the Cylindrical Titanium Implant–Plastic System

  • A. I. Mamayev
  • V. A. Mamayeva
  • V. I. Kalita
  • D. I. Komlev
  • A. A. Radyuk
  • A. Yu. Ivannikov
  • A. B. Mikhaylova
  • A. S. Baikin
  • M. A. Sevostyanov
  • N. A. Amel’chenko
Materials for Ensuring Human Vital Activity and Environmental Protection
  • 9 Downloads

Abstract

Analysis of the combination of the “titanium implant–bone tissue” using the model of the composite material “cylindrical titanium implant–plastic,” where plastic with the shear strength of 62.3 MPa simulates the bone tissue, was performed. The shear strength of the “cylindrical titanium implant–plastic” system increases with the increase of the macro- and microrelief of the titanium surface in the series smooth surface, processed by abrasive, with three-dimensional capillary-porous (TCP) titanium coating, with TCP Ti coating and microplasma oxidation—2.9, 29, 44.65, and 52.27 MPa respectively. In this case, the shear strength of plastic in this combination increases from 3 to 92%. Analysis of the shear strength of coatings during microplasma oxidation in phosphate and silicate electrolytes with the addition of hydroxyapatite, calcium gluconate, or citrate was conducted. The best result of 57.27 MPa was obtained using the phosphate electrolyte containing synthetic hydroxyapatite (HA). In this case, when samples were subjected to shear, the destruction of samples occurred with plastic simulating the bone tissue. In samples with three-dimensional capillary-porous titanium coating at the average shear strength of 44.65 MPa, the fracture surface passes along the top of the coating.

Keywords

model composite material “cylindrical titanium implant–plastic,” shear strength three-dimensional capillary-porous titanium coating plasma spraying microplasma oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndt, C.C., Hasan, F., Tietz, U., and Schmitz, K.-P., A review of hydroxyapatite coatings manufactured by thermal spray, in Advances in Calcium Phosphate Biomaterials, Ben-Nissan, B., Ed., Berlin: Springer-Verlag, 2014.Google Scholar
  2. 2.
    Dorozhkin, S.V., Review calcium orthophosphate deposits: Preparation, properties and biomedical applications, Mater. Sci. Eng., C, 2015, vol. 55, pp. 272–326.CrossRefGoogle Scholar
  3. 3.
    Sahay, V., Lare, P.J., and Hahn, H., Physical and mechanical characterization of porous coatings for medical and dental devices, Proc. Third National Thermal Spray Conf. “Thermal Spray Research and Applications,” Long Beach, CA, May 20–25, 1990, Materials Park, OH: ASM Int., 1991, pp. 425–430.Google Scholar
  4. 4.
    Harris, D.H., Bioinert CP–Ti and Ti–6Al–4V Coatings by the Arc-Plasma Spray Process, Dayton: Titanium Dev. Assoc., 1990, pp. 636–645.Google Scholar
  5. 5.
    Borsari, V., Fini, M., Giavaresi, G., Tschon, M., Chiesa, R., Chiusoli, L., and Giardino, R., Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughness in different implantation environments, J. Biomed. Mater. Res., 2009, vol. 89, no. 2, pp. 550–560.CrossRefGoogle Scholar
  6. 6.
    van Oirschot, B.A.J.A., Surface modifications for endosseous implant materials: in vivo evaluation of the osteophilic properties of titanium bone implants, PhD Thesis, Nijmegen: Radboud Univ., 2015, pp. 21–42. ISBN 978-94-6259-579-8.Google Scholar
  7. 7.
    Kalita, V.I., Komlev, D.I., Komlev, V.S., and Radyuk, A.A., The shear strength of three-dimensional capillaryporous titanium coatings for intraosseous implants, Mater. Sci. Eng., C, 2016, vol. 60, pp. 255–259.CrossRefGoogle Scholar
  8. 8.
    Kalita, V.I., Gnedovets, A.G., Mamaev, A.I., Mamaeva, V.A., Malanin, D.A., and Pisarev, V.B., Plasma deposited bioactive porous coatings for intrabone implants, Proc. 17th Int. Symp. on Plasma Chemistry (ISPC-17), August 7–12, 2005, Abstracts of Papers, Toronto, 2005, pp. 1105–1106.Google Scholar
  9. 9.
    Kalita, V.I., Komlev, D.I., Ivannikov, A.Yu., Radyuk, A.A., Komlev, V.S., Mamonov, V.I., Sevast’ianov, M.A., and Baikin, A.S., The shear strength of Ti–HA composite coatings for intraosseous implants, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 2, pp. 296–304.CrossRefGoogle Scholar
  10. 10.
    Mamaev, A.I. and Mamaeva, V.A., Sil’notokovye protsessy v rastvorakh elektrolitov (High-Current Processes in Solutions of Electrolytes), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2005.Google Scholar
  11. 11.
    Mamaev, A.I., Mamaeva, V.A., Dorofeeva, T.I., and Emel’yanova, E.Yu., Modeling of deformation load and destruction of layered nonmetallic inorganic materials with nano-and microsize wave texture of a surface, Izv. Vyssh. Uchebn. Zaved., Fiz., 2012, vol. 55, no. 9–3, pp. 78–87.Google Scholar
  12. 12.
    Kalita, V.I., Mamaev, A.I., Mamaeva, V.A., Malanin, D.A., Komlev, D.I., Gnedovets, A.G., Novochadov, V.V., Komlev, V.S., and Radyuk, A.A., Structure and shear strength of implants with plasma coatings, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 3, pp. 376–387.CrossRefGoogle Scholar
  13. 13.
    Tonino, A.J., Thèrin, M., and Doyle, C., Hydroxyapatite-coated femoral stems. Histology and histomorphometry around five components retrieved at post mortem, J. Bone Jt. Surg., Br. Vol., 1999, vol. 81, pp. 148–154.CrossRefGoogle Scholar
  14. 14.
    Mamaev, A.I., Mamaeva, V.A., Kolenchin, N.F., Chubenko, A.K., Koval’skaya, Ya.B., Dolgova, Yu.N., and Beletskaya, E.Yu., Growth and filling regularities of filamentary channels in non-metallic inorganic coatings under anodic oxidation of valve metals. Mathematical modeling, Izv. Vyssh. Uchebn. Zaved., Fiz., 2015, vol. 58, no. 8, pp. 18–23.Google Scholar
  15. 15.
    Mamaev, A.I., Mamaeva, V.A., Kolenchin, N.F., Chubenko, A.K., Kovalskaya, Ya.B., Konstantinova, T.A., Dolgova, Yu.N., and Beletskaya, E.Yu., Regularities of filamentary channels in the formation of non-metallic inorganic nanostructured coatings by microplasma galvanostatic mode in solution, Russ. Phys. J., 2016, vol. 58, no. 12, pp. 1720–1725. doi 10.1007/s11182-016-0707-xCrossRefGoogle Scholar
  16. 16.
    Konstantinova, T.A., Mamaev, A.I., Chubenko, A.K., and Mamaeva, V.A., Method for phase boundary structure control of laminated materials; destruction process investigations of nanostructured coatings with predetermined phase boundary texture, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 116, no. 1, p. 012032. doi 10.1088/1757-899X/116/1/012032CrossRefGoogle Scholar
  17. 17.
    Mamaev, A.I., Mamaeva, V.A., Kolenchin, N.F., Chubenko, A.K., Kovalskaya, Ya.B., Dolgova, Yu.N., and Beletskaya, E.Yu., Growth and filling regularities of filamentary channels in non-metallic inorganic coatings under anodic oxidation of valve metals. Mathematical modeling, Russ. Phys. J., 2015, vol. 58, no. 8, pp. 1049–1057. doi 10.1007/s11182-015-0610-xCrossRefGoogle Scholar
  18. 18.
    Baranova, T.A., Chubenko, A.K., Mamaev, A.I., Mamaeva, V.A., and Kovalskaya, Ya.B., Construction of layered structures on valve metal alloys by microplasma oxidation, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 156, art. ID 012013. doi 10.1088./1557-899X/156/1/012013Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Mamayev
    • 1
  • V. A. Mamayeva
    • 1
  • V. I. Kalita
    • 2
  • D. I. Komlev
    • 2
  • A. A. Radyuk
    • 2
  • A. Yu. Ivannikov
    • 2
  • A. B. Mikhaylova
    • 2
  • A. S. Baikin
    • 2
  • M. A. Sevostyanov
    • 2
  • N. A. Amel’chenko
    • 3
  1. 1.Scientific Innovation Educational Center (NIOTS) “Microplasma technology”National Research Tomsk State UniversityTomskRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations