Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 777–784 | Cite as

Composite Bilayer Polymer Membranes with Hydrophobic Layers

  • L. I. KravetsEmail author
  • V. A. Altynov
  • V. F. Zagonenko
  • N. E. Lizunov
  • V. Satulu
  • B. Mitu
  • G. Dinescu
Physicochemical Principles of Creating Materials and Technologies


Bilayer composite membranes (CMs) are prepared by depositing a polymer layer onto track-etched polypropylene (PP) membrane by using plasma polymerization of hexamethyldisilazane (HMDSN). The chemical structure, wetting properties, and morphological characteristics of the prepared CMs are investigated. By depositing the plasma-polymerized polymer, we obtain CMs with two hydrophobic layers, of which one is the initial PP membrane, serving as a matrix. This layer has a water contact angle of 120°. The other layer, which was formed during plasma polymerization of HMDSN, contains nitrogen-containing functional groups, along with minor amounts of oxygen-containing, mainly carboxylic, groups. The water contact angle of this layer is ~98°. Deposition of a polymer film by plasma-assisted polymerization results in smoothing surface asperities of the initial (matrix) membrane, a considerable decrease in pore diameter, and alteration of pore shape; namely, the pores acquire an asymmetric (conical) profile.


track-etched membranes plasma polymerization method hexamethyldisilazane bilayer composite membranes hydrophobic polymer layers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kravets, L., Dmitriev, S., Lizunov, N., Satulu, V., Mitu, B., and Dinescu, G., Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymerization of pyrrole vapors, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, pp. 485–492.CrossRefGoogle Scholar
  2. 2.
    Kravets, L., Dmitriev, S., Dinescu, G., Satulu, V., Gilman, A., and Yablokov, M., Polymer composite nanomembranes with asymmetry of conductivity, Mater. Sci. Forum, 2010, vols. 636–637, pp. 812–818.Google Scholar
  3. 3.
    Kravets, L.I., Dmitriev, S.N., Satulu, V., Mitu, B., and Dinescu, G., Structure and electrochemical properties of track membranes with a polymer layer obtained by plasma polymerization of acetylene, J. Phys.: Confer. Ser., 2014, vol. 516, no. 012006.Google Scholar
  4. 4.
    Kravets, L.I., Dmitriev, S.N., Goryacheva, T.A., Satulu, V., Mitu, B., and Dinescu, G., Structure and electrochemical properties of track membranes modified in tetrafluoroethane plasma, Membr. Membr. Tekhnol., 2011, vol. 1, no. 2, pp. 126–138Google Scholar
  5. 5.
    Yasuda, H., Plasma Polymerization, New York: Academic, 1985; Moscow: Mir, 1988.Google Scholar
  6. 6.
    Kravets, L.I., Gilman, A.B., Yablokov, M.Yu., Satulu, V., Mitu, B., and Dinescu, G., A novel technique for fabrication of nanofluidic devices with polymer film formed by plasma polymerization, High Temp. Mat. Proc., 2015, vol. 19, no 1, pp. 1–18.Google Scholar
  7. 7.
    Kravets, L.I., Gilman, A.B., Yablokov, M.Yu., Shchegolikhin, A.N., Mitu, B., and Dinescu, G., Properties of poly(ethylene terephthalate) track membrane with a polymer layer obtained by electron beam dispersion of polytetrafluoroethylene in vacuum, High Temp. Mat. Proc., 2015, vol. 19, no. 2, pp. 121–139.CrossRefGoogle Scholar
  8. 8.
    Vinogradova, O.I., Slippage of water over hydrophobic surfaces, Int. J. Miner. Proc., 1999, vol. 56, pp. 31–60.CrossRefGoogle Scholar
  9. 9.
    Rothstein, J.P., Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech., 2010, vol. 42, pp. 89–109.CrossRefGoogle Scholar
  10. 10.
    Kravets, L.I., Dmitriev, S.N., and Apel, P.Yu., Production and properties of polypropylene track membranes, High Energy Chem., 1997, vol. 31, no. 2, pp. 89–94.Google Scholar
  11. 11.
    Mulder, M., Basic Principles of Membrane Technology, Dordrecht: Kluwer, 1996.CrossRefGoogle Scholar
  12. 12.
    Orelovich, O.L. and Apel’, P.Yu., Methods for preparing samples of track membranes for scanning electron microscopy, Instrum. Exp. Techn., 2001, vol. 44, no. 1, pp. 111–114.CrossRefGoogle Scholar
  13. 13.
    Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, Chichester: Wiley, 1992.Google Scholar
  14. 14.
    Kuptsov, A.Kh. and Zhizhin, G.N., Fur’e-KR i Fur’e-IK spektry polimerov (Fur’e-spektry kombinatsionnogo rasseyaniya i infrakrasnogo pogloshcheniya polimerov) (Fourier–Raman Spectra and Fourier-IR Spectra of Polymers (Fourier Spectra of Raman Scattering and Infrared Absorption of Polymers)), Moscow: Fizmatlit, 2001.Google Scholar
  15. 15.
    Quere, D., Wetting and roughness, Annu. Rev. Mater. Res., 2008, vol. 38, pp. 71–99.CrossRefGoogle Scholar
  16. 16.
    Kravets, L., Gilman, A., Yablokov, M., Elinson, V., Mitu, B., and Dinescu, G., Surface and electrochemical properties of plasma-treated polypropylene track membrane, Plasma Process. Polym., 2013, vol. 10, pp. 603–618.CrossRefGoogle Scholar
  17. 17.
    Barchiche, Ch.-E., Duday, D., Choquet, P., Migeon, H.-N., and Rocca, E., Electrochemical behavior of thin films deposited by plasma DBD torch on copper: An O2-diffusion barrier, Electrochem. Acta, 2009, vol. 54, pp. 5789–5795.CrossRefGoogle Scholar
  18. 18.
    Bulou, S., Brizoual, L., Miska, P., Poucques, L., Bougdira, J., and Belmahi, M., Wide variations of SiCxNy:H thin films optical constants deposited by H2/N2/Ar/hexamethyldisilazane microwave plasma, Surf. Coat. Technol., 2012, vol. 208, pp. 46–50.CrossRefGoogle Scholar
  19. 19.
    Yang, S.H., Liu, C.H., Su, C.H., and Chen, H., Atmospheric pressure plasma deposition of SiOx films for superhydrophobic application, Thin Solid Films, 2009, vol. 517, pp. 5284–5287.CrossRefGoogle Scholar
  20. 20.
    Vassallo, E., Cremona, A., Dellera, F., Laguardia, L., Ambrosone, G., and Coscia, U., Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD, Appl. Surf. Sci., 2006, vol. 252, pp. 7993–8000.CrossRefGoogle Scholar
  21. 21.
    Lin, Y.-S., Weng, M.-S., Chung, T.-W., and Huang, C., Enhanced surface hardness of flexible polycarbonate substrates using plasma-polymerized organosilicon oxynitride films by air plasma jet under atmospheric pressure, Surf. Coat. Technol., 2011, vol. 205, pp. 3856–3864.CrossRefGoogle Scholar
  22. 22.
    Kolipa, K.L., Brueser, V., Schlueter, R., Quade, A., Schaefer, J., Wulff, H., Strunskus, T., and Faupel, F., Simple method of hybrid PVD/PECVD to prepare well-dispersed cobalt-plasma polymerized hexamethyldisilazane nanocomposites, Surf. Coat. Technol., 2012, vol. 207, pp. 565–570.CrossRefGoogle Scholar
  23. 23.
    Kodaira, F.V.P., Mota, R.P., Hills, V.A., Honda, R.I., Kayama, M.E., Kostov, K.G., and Algatti, M.A., Thin films generated by plasma immersion ion implantation and deposition of hexamethyldisilazane mixed with nitrogen in different proportions, J. Phys.: Conf. Ser., 2012, vol. 370, no. 012028.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. I. Kravets
    • 1
    Email author
  • V. A. Altynov
    • 1
  • V. F. Zagonenko
    • 1
  • N. E. Lizunov
    • 1
  • V. Satulu
    • 2
  • B. Mitu
    • 2
  • G. Dinescu
    • 2
  1. 1.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.National Institute for Laser, Plasma and Radiation PhysicsMagurele, BucharestRomania

Personalised recommendations