Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 807–812 | Cite as

Systems of Manganites with Enhanced Electromagnetic Parameters

  • V. K. KarpasyukEmail author
  • A. G. Badelin
  • I. M. Derzhavin
  • D. I. Merkulov
Electronic Engineering Materials


The effects of paired substitution of 3d10 cations (\(\rm{Zn{_{0.5}^{2+}}Ge{_{0.5}^{4+}}}\)) or 2p6 and 3p6 cations (\(\rm{Mg{_{0.5}^{2+}}Ti{_{0.5}^{4+}}}\)) for manganese in polycrystalline manganites of specifically designed systems \(\text{L}{\text{a}_{0.8 - x}}\text{S}{\text{r}_{0.2 + x}}\text{Mn}_{0.8 - 2x -2\gamma}^{3 +}\text{Mn}_{0.2 + x + 2\gamma}^{4 +} \times {\left( {\text{Me}_{0.5}^{2 +}\text{Me}_{0.5}^{4 +}} \right)_x}{\text{O}_{3 + \gamma}}\) on their electromagnetic parameters are studied and compared. Temperature dependences of the resistance, magnetoresistance and magnetostriction constant are measured. In the proposed systems, the linear rise of strontium concentration simultaneously with increasing number of substituents allows high characteristics of manganites to be maintained owing to the increase in the concentration of free charge carriers, through which ferromagnetic double exchange interaction is carried out. The data obtained are also compared with the properties of Ga3+(3d10)-substituted manganites as peculiar standards. All sintered (Zn,Ge)-containing manganites in the temperature range from 100 to 293 K have metallic type of conductivity, while (Mg,Ti)-substituted samples exhibit semiconducting features, and Ga-containing compositions reveal a “metal-semiconductor” transition point (Tms). The annealing under conditions ensuring stoichiometric oxygen content leads to the shift of this transition toward lower temperatures in manganites with 3d10 substituents and to the increase in Tms in compositions with substituting p6 cations. In the investigated systems, the absolute values of negative magnetoresistance up to ~90–200% at 120–150 K in the field of 9.2 kOe are obtained, and the linear magnetostriction constant reaches record values of about 10–3 in the field of 4.6 kOe. Manganite La0.65Sr0.35Mn0.85Ga0.15O3 with a weak temperature dependence of magnetoresistance of ~20% at room temperatures is of particular service for magnetic field sensors. Possible approaches to the interpretation of established regularities demonstrating the role of electronic configurations of substituents for manganese in the formation of the properties of manganites and interesting for the development of new materials for electronics are discussed.


specifically designed systems paired substituents electron shells “metal–semiconductor” transition colossal magnetoresistance giant magnetostriction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Volkov, N.V., Spintronics: Manganite-based magnetic tunnel structures, Phys.-Usp., 2012, vol. 55, no. 3, pp. 250–269.CrossRefGoogle Scholar
  2. 2.
    Abdel-Latif, I.A., Rare earth manganites and their applications, J. Phys., 2012, vol. 1, no. 3, pp. 15–31.Google Scholar
  3. 3.
    Karpasyuk, V., Smirnov, A., and Badelin, A., Ceramic manganites with contacts of various metals in magnetic field sensors, World Appl. Sci. J., 2014, vol. 32, pp. 2028–2031.Google Scholar
  4. 4.
    Muscas, G., Kumar, P.A., Barucca, G., Concas, G., Varvaro, G., Mathieu, R., and Peddis, D., Designing new ferrite/manganite nanocomposites, Nanoscale, 2016, vol. 8, pp. 2081–2089.CrossRefPubMedGoogle Scholar
  5. 5.
    Jacobs, R., Booske, J., and Morgan, D., Understanding and controlling the work function of perovskite oxides using density functional theory, Adv. Funct. Mater., 2016, vol. 26, pp. 5471–5482.CrossRefGoogle Scholar
  6. 6.
    Dagotto, E., Hotta, T., and Moreo, A., Colossal magnetoresistant materials: The key role of phase separation, Phys. Rep., 2001, vol. 344, pp. 1–153.CrossRefGoogle Scholar
  7. 7.
    Koroleva, L.I., Demin, R.V., Kozlov, A.V., Zashchirinskii, D.M., and Mukovskii, Ya.M., Relation between giant volume magnetostriction, colossal magnetoresistance, and crystal lattice softening in manganites La1–xAyMnO3 (A = Ca, Ag, Ba, Sr), J. Exp. Theor. Phys., 2007, vol. 104, no. 1, pp. 76–86.CrossRefGoogle Scholar
  8. 8.
    Koroleva, L.I., Zashchirinskii, D.M., Khapaeva, T.M., Gurskii, L.I., Kalanda, N.A., Trukhan, V.M., Szymczak, R., and Krzumanska, B., Magnetic, electrical, magnetoelectrical, and magnetoelastic properties of La0.9Sr0.1MnO3–y manganites, Phys. Solid State, 2010, vol. 52, no. 1, pp. 96–100.CrossRefGoogle Scholar
  9. 9.
    Karpasyuk, V.K., Badelin, A.G., Smirnov, A.M., Sorokin, V.V., Evseeva, A., Doyutova, E., and Shchepetkin, A.A., N-type current-voltage characteristics of manganites, J. Phys.: Conf. Ser., 2010, vol. 200, pp. 052026–052029.Google Scholar
  10. 10.
    V’yunov, O.I., Belous, A.G., Tovstolytkin, A.I., and Yanchevskii, O.Z., (LaSr)(Mn,Me)O3 manganites doped with d metals: Study of charge compensation mechanisms by crystallographic and magnetic characterizations, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 3919–3322.CrossRefGoogle Scholar
  11. 11.
    Troyanchuk, I.O., Bushinsky, M.V., Szymczak, H., Bärner, K., and Maignan, A., Magnetic interaction in Mg, Ti, Nb doped manganites, Eur. Phys. J., 2002, vol. 28, pp. 75–80.Google Scholar
  12. 12.
    Liu, M.F., Du, Z.Z., Xie, Y.L., Li, X., Yan, Z.B., and Liu, J.-M., Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7–yCa0.3+yMn1–yRuyO3 (0 ≤ y ≤ 0.3): The role of Mn–Ru t 2g super-exchange, Sci. Rep., 2015, vol. 5, pp. 9922–9930.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kowalik, M., Tokarz, W., and Kolodziejczyk, A., Electronic band structures of La2/3Pb1/3Mn2/3-(Fe,Co,Ni)1/3O3, Acta Phys. Pol., A, 2015, vol. 127, pp. 251–253.CrossRefGoogle Scholar
  14. 14.
    Yanchevskii, O.Z., V’yunov, O.I., Belous, A.G., Tovstolytkin, A.I., and Kravchik, V.P., Synthesis and characterization of La0.7Sr0.3Mn1–xTixO3 manganites, Phys. Solid State, 2006, vol. 48, pp. 709–716.CrossRefGoogle Scholar
  15. 15.
    Mizusaki, J., Mori, N., Takai, H., Yonemura, Y., Minamiue, H., Tagawa, H., Dokiya, M., Inaba, H., Naraya, K., Sasamoto, T., and Hashimoto, T., Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1–xSrxMnO3+δ, Solid State Ionics, 2000, vol. 129, pp. 163–177.CrossRefGoogle Scholar
  16. 16.
    Koroleva, L.I., Zashchirinskii, D.M., Khapaeva, T.M., Gurskií, L.I., Kalanda, N.A., Trukhan, V.M., Szymczak, R., and Krzumanska, B., Effect of oxygen deficiency on the magnetic, electrical, magnetoelectric, and magnetoelastic properties of La1–xSrxMnO3–δ manganites, Phys. Solid State, 2008, vol. 50, no. 12, pp. 2298–2302.CrossRefGoogle Scholar
  17. 17.
    Musaeva, Z.R., Badelin, A.G., Smirnov, A.M., Karpasyuk, V.K., Ponomarev, V.I., and Shchepetkin, A.A., Effect of oxygen content and nonstoichiometry defects on the phase transformations in manganites of the La0.65Sr0.35Mn1–xyNixTiyO3+γ system, Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 10, pp. 1462–1465.CrossRefGoogle Scholar
  18. 18.
    Merkulov, D., Badelin, A., Estemirova, S., and Karpasyuk, V., Mechanisms of substituting quadrivalent ions influence on the properties of La–Sr manganites, Acta Phys. Pol., A, 2015, vol. 127, no. 2, pp. 248–250.CrossRefGoogle Scholar
  19. 19.
    Liu, G.-L., Zhou, J.-S., and Goodenough, J.B., Interplay between charge, orbital and magnetic ordering in La1–xSrxMnO3, Phys. Rev. B, 2001, vol. 64, pp. 144414–144420.CrossRefGoogle Scholar
  20. 20.
    Musaeva, Z.R., Vybornov, N.A., Karpasyuk, V.K., Smirnov, A.M., Uspenskaya, L.S., and Yazenkov, S.Kh., Structural self-organization, domain structure, and magnetic characteristics of manganites of the La–Sr–Mn–Ti–Ni–O system, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2007, vol. 1, pp. 423–427.CrossRefGoogle Scholar
  21. 21.
    Badelin, A.G., Datskaya, Z.R., Epifanova, I.Yu., Estemirova, S.Kh., Karpasyuk, V.K., and Smirnov, A.M., Structural and electromagnetic characteristics of perovskites in La1–cxSrc+xMn1–xMe4+xO3 systems (Me = Ge, Ti), Eur. Phys. J., 2013, vol. 40, pp. 15004–15007.Google Scholar
  22. 22.
    Badelin, A.G., Karpasyuk, V.K., Smirnov, A.M., Evseeva, A.V., Firsova, E.P., and Estemirova, S.Kh., Phase transitions in manganites with substitution of divalent ions for manganese, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no 2, pp. 100–103.Google Scholar
  23. 23.
    Karpasyuk, V.K., Badelin, A.G., Derzhavin, I.M., Merkulov, D.I., and Smirnov, A.M., Electromagnetic parameters of multicomponent manganites depending on combination and electronic configuration of substituents for manganese, Int. J. Appl. Eng. Res., 2015, vol. 10, no. 21, pp. 42746–42749.Google Scholar
  24. 24.
    Dagotto, E., Open questions in CMR manganites, relevance of clustered states and analogies with other compounds including the cuprates, New J. Phys., 2005, vol. 7, pp. 1–28.CrossRefGoogle Scholar
  25. 25.
    Karpasyuk, V.K. and Badelin, A.G., Struktura i magnitnye kharakteristiki lantan-strontsievykh manganitov s zameshcheniem margantsa raznovalentnymi ionami (The Structure and Magnetic Characteristics of Lanthanum-Strontium Manganites with Substitution of Manganese by Different Valence Ions), Astrakhan: IP Sorokin R.V., 2016.Google Scholar
  26. 26.
    Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 1976, vol. 32, pp. 751–767.CrossRefGoogle Scholar
  27. 27.
    Nagaev, E.L., Lanthanum manganites and other giant-magnetoresistance magnetic conductors, Phys.-Usp., 1996, vol. 39, no. 8, pp. 781–805.CrossRefGoogle Scholar
  28. 28.
    Pickett, W.E. and Singh, D.J., Magnetoelectronic and magnetostructural coupling in the La1–xCaxMnO3 system, Europhys. Lett., 1995, vol. 32, pp. 759–764.CrossRefGoogle Scholar
  29. 29.
    Senis, R., Balcells, L., Laukhin, V., Martínez, B., Fontcuberta, J., Pinsard, L., and Revcolevschi, A., Positive magnetoresistance in low-doped La1‒xSrxMnO3 (x ≤ 0.14) perovskites, J. Appl. Phys., 2000, vol. 87, pp. 5609–5611.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. K. Karpasyuk
    • 1
    Email author
  • A. G. Badelin
    • 1
  • I. M. Derzhavin
    • 1
  • D. I. Merkulov
    • 1
  1. 1.Astrakhan State UniversityAstrakhanRussia

Personalised recommendations