Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 930–936 | Cite as

Effect of Drying Methods of Alumina Powder and Graphene Oxide Mixture on the Mechanical and Electrical Properties of Sintered Composites Fabricated by Spark Plasma Sintering

  • P. V. Fokin
  • N. W. Solis Pinargote
  • E. V. Kuznetsova
  • P. Y. Peretyagin
  • A. Smirnov
New Technologies for Design and Processing of Materials

Abstract

This paper presents a study on graphene-reinforced alumina ceramic composites and the resulting mechanical and electrical properties. Three drying methods were chosen for the fabrication of the initial mixtures: spray, freeze, and vacuum. Spark plasma sintering was chosen as a method of consolidating mixtures. A combination of spray drying and spark plasma sintering makes it possible to produce a high-density (99%) ceramic nanocomposite with improved mechanical properties. The hardness and crack resistance values were increased by 6 and 28%, respectively, compared to other materials studied in this work. This improvement is due to an extremely good dispersion of graphene in the composite, which leads to the decrease in the grain size of the ceramic matrix and consequently reduces the probability of crack occurrence. In addition to these exceptional mechanical properties, the sintered composites also showed high electrical conductivity, which allows the compacts to be machined using electrical discharge machining and thus facilitates the fabrication of ceramic components with sophisticated shapes while reducing machining costs.

Keywords

nanocomposite oxide ceramics spark plasma sintering graphene oxide electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, I.W.M. and Owers, W.R., Fabrication, microstructure and properties of Fe–TiC ceramic–metal composites, Curr. Appl. Phys., 2004, vol. 4, nos. 2–4, pp. 171–174.CrossRefGoogle Scholar
  2. 2.
    Volosova, M.A., Gurin, V.D., and Seleznev, A.E., Simulation of power parameters in face milling of hardened steel by a tool with a ceramic cutting part, Vestn. Mosk. Gos. Tekh. Univ., Stankin, 2015, no. 4, pp. 30–35.Google Scholar
  3. 3.
    Vereshchaka, A.S., Lazareva, M.A., Kryuchkov, K.V., Lytkin, D.N., Shegai, D.L., and Khozhaev, O.H., Research of cutting properties of cutting layered composite ceramics with multicomponent functional coatings, Vestn. Mosk. Gos. Tekh. Univ., Stankin, 2012, vol. 1, no. 1, pp. 27–31.Google Scholar
  4. 4.
    Volosova, M.A. and Grigor’ev, S.N., Cutting ceramic plates: influence of abrasive treatment and coatings on their operation parameters, Vestn. Mosk. Gos. Tekh. Univ., Stankin, 2011, no. 2, pp. 68–74.Google Scholar
  5. 5.
    Lazareva, M.N., Sotova, E.S., and Vereshchaka, A.S., Cutting properties of the tool equipped by plates from mixed ceramics with a multifunctional coating, Vestn. Mosk. Gos. Tekh. Univ., Stankin, 2012, no. 3, pp. 50–54.Google Scholar
  6. 6.
    Okun’kova, A.A., Automated preparation of production parts of molds on CNC machines by electroerosive wire processing, Vestn. Mosk. Gos. Tekh. Univ., Stankin, 2008, no. 4, pp. 76–81.Google Scholar
  7. 7.
    Baughman, R.H., Zakhidov, A.A., and de Heer, W.A., Carbon nanotubes the route toward applications, Science, 2002, vol. 297, no. 5582, pp. 787–792.CrossRefPubMedGoogle Scholar
  8. 8.
    Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., Superior thermal conductivity of single-layer graphene, Nano Lett. 2008, vol. 8, no. 3, pp. 902–907.Google Scholar
  9. 9.
    Stauber, T., Peres, N.M.R., and Guinea, F., Electronic transport in graphene: A semiclassical approach including mid-gap states, Phys. Rev. B, 2007, vol. 76, art. ID 205423.Google Scholar
  10. 10.
    Lee, C., Wei, X.D., Kysar, J.W., and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer grapheme, Science, 2008, vol. 321, no. 5887, pp. 385–388.CrossRefPubMedGoogle Scholar
  11. 11.
    Centeno, A., Rocha, V.G., Alonso, B., Fernández, A., Gutiérrez-González, C.F., Torrecillas, R., and Zurutuza, A., Graphene for tough and electroconductive alumina ceramics, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 3201–3210.CrossRefGoogle Scholar
  12. 12.
    Grigoriev, S., Peretyagin, P., Smirnov, A., Solís, W., Díaz, L.A., Fernández, A., and Torrecillas, R., Effect of graphene, addition on the mechanical and electrical properties of Al2O3–SiCw ceramics, J. Eur. Ceram. Soc., 2017, vol. 37, no. 6, pp. 2473–2479.CrossRefGoogle Scholar
  13. 13.
    Gutiérrez-González, C.F., Suarez, M., Pozhidaev, S., Rivera, S., Peretyagin, P., Solís, W., Díaz, L.A., Fernández, A., and Torrecillas, R., Effect of TiC addition on the mechanical behavior of Al2O3–SiC whiskers composites obtained by SPS, J. Eur. Ceram. Soc., 2016, vol. 36, pp. 2149–2151.CrossRefGoogle Scholar
  14. 14.
    Solís, N.W., Peretyagin, P., Torrecillas, R., Fernández, A., Menéndez, J.L., Mallada, C., Díaz, L.A., and Moya, J.S., Electrically conductor black zirconia ceramic by SPS using graphene oxide, J. Electroceram., 2017, vol. 38, no. 1, pp. 119–124.CrossRefGoogle Scholar
  15. 15.
    Pozhidaev, S.S., Seleznev, A.E., Solis Pinargote, N.W., and Peretyagin, P.Yu., Spark plasma sintering of electro conductive nanocomposite Al2O3–SiCW–TiC, Mech. Ind., 2015, vol. 16, pp. 710–715.Google Scholar
  16. 16.
    Gutiérrez-González, C.F., Solis Pinargote, N.W., Agouram, S., Peretyagin, P.Y., Lopez-Esteban, S., and Torrecillas, R., Spark plasma sintering of zirconia/nano-nickel composites, Mech. Ind., 2015, vol. 16, pp. 703–707.Google Scholar
  17. 17.
    Smirnov, A.V., Yushin, D.I., Solis Pinargote, N.W., Peretyagin, P.Yu., and Torrecillas, R., Spark plasma sintering of nanostructured powder materials, Russ. Eng. Res., 2016, vol. 36, no. 3, pp. 249–254.Google Scholar
  18. 18.
    Yushin, D.I., Smirnov, A.V., Solis Pinargote, N., Peretyagin, P.Yu., Kuznetsov, V.A., and Torrecillas, R., Spark plasma sintering of cutting plates, Russ. Eng. Res., 2016, vol. 36, no. 5, pp. 410–413.Google Scholar
  19. 19.
    Álvarez, I., Torrecillas, R., Solis, W., Peretyagin, P., and Fernández, A., Microstructural design of Al2O3–SiC nanocomposites by spark plasma sintering, Ceram. Int., 2016, vol. 42, no. 15, pp. 17248–17253.Google Scholar
  20. 20.
    Hummers, W.S., Jr. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, pp. 1339–1339.CrossRefGoogle Scholar
  21. 21.
    Smirnov, A., Kurland, H.D., Grabow, J., Müller, F.A., and Bartolomé, J.F., Microstructure, mechanical properties and low temperature degradation resistance of 2Y-TZP ceramic materials derived from nanopowders prepared by laser vaporization, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 2685–2691.CrossRefGoogle Scholar
  22. 22.
    Poklonskii, N.A., Belyavskii, S.S., Vyrko, S.A., and Lapchuk, T.M., Chetyrekhzondovyi metod izmereniya elektricheskogo soprotivleniya poluprovodnikovykh materialov (Use of Four-Terminal Sensing for Measurement of Electrical Resistance of Semiconductor Materials), Minsk: Bel. Gos. Univ., 1998.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. V. Fokin
    • 1
  • N. W. Solis Pinargote
    • 1
  • E. V. Kuznetsova
    • 1
  • P. Y. Peretyagin
    • 1
  • A. Smirnov
    • 1
  1. 1.Moscow State Technical University STANKINMoscowRussia

Personalised recommendations