Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 924–929 | Cite as

Tuning the Properties of Refractory Carbide Nanopowders

  • Yu. V. Blagoveshchenskiy
  • N. V. Isaeva
  • M. A. Sinaiskiy
  • A. B. Ankudinov
  • V. A. Zelensky
New Technologies for Design and Processing of Materials
  • 2 Downloads

Abstract

Two methods for transition metal carbide nanopowder production such as plasma chemical synthesis and high-energy ball milling are considered. The control of the chemical, phase, and dispersed composition of carbides produced from oxide and halogenide raw materials is studied by an electric arc plasma plant with a power of 20 kW. A study of the grinding time effect of micron-sized carbide powders on a Retsch PM-400 mill tool in hard-alloy containers is carried out to obtain nanosized powders, as well as to determine fractional composition and particle shapes. It is shown that powders obtained by plasma chemical synthesis have a grain size of 20–80 nm and are subjected to a spheroidized or equiaxed shape. The process allows one to tune the phase composition and the content of common and free carbon. Polydispersed carbide powders with a specific surface area of 3–25 m2/g and predominately bimodal particle size distribution in a range from less than 0.1 μm to dozens of microns are thus obtained by high-energy ball milling.

Keywords

plasma chemical synthesis high-energy ball milling nanopowders transition metal carbide properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Storms, E.K., The Refractory Carbides, New York: Academic, 1967.Google Scholar
  2. 2.
    Tsvetkov, Yu.V. and Panfilov, S.A., Nizkotemperaturnaya plazma v protsessakh vosstanovleniya (Low-Temperature Plasma in Reduction Processes), Moscow: Nauka, 1980.Google Scholar
  3. 3.
    Alekseev, N.V., Blagoveshchenskii, Yu.V., Zviadadze, G.N., and Tagirov, I.K., Production of fine niobium and tantalum carbide powders, Sov. Powder Metall. Met. Ceram., 1980, vol. 19, no. 8, pp. 517–520.Google Scholar
  4. 4.
    Isaeva, N.V., Blagoveshchenskii, Yu.V., Blagoveshchenskay, a N.V., Mel’nik, Yu.I., Samokhin, A.V., Alekseev, N.V., and Astashov, A.G., Preparation of nanopowders of carbides and hard-alloy mixtures applying low-temperature plasma, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 6, pp. 585–591.Google Scholar
  5. 5.
    Ryu, T., Sohn, H.Y., Hwang, K.S., and Fang, Z.Z., Plasma synthesis of tungsten carbide and cobalt nanocomposite powder, J. Alloys Compd., 2009, vol. 481, pp. 274–277.CrossRefGoogle Scholar
  6. 6.
    Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Activation of Chemical Processes), Novosibirsk: Nauka, 1986.Google Scholar
  7. 7.
    Boldyrev, V.V., Mechanochemistry and mechanical activation of solids, Russ. Chem. Rev., 2006, vol. 75, no. 3, pp. 177–189.CrossRefGoogle Scholar
  8. 8.
    Yang, M., Guo, Z., Xiong, J., Liu, F., and Qi, K., Microstructural changes of (Ti,W)C solid solution induced by ball milling, Int. J. Refract. Met. Hard Mater., 2017, vol. 66, pp. 83–87.CrossRefGoogle Scholar
  9. 9.
    Kurlov, A.S. and Gusev, A.I., Effect of nonstoichiometry of NbCy and TaCy powders on their high-energy ball milling, Int. J. Refract. Met. Hard Mater., 2014, vol. 46, pp. 125–136.CrossRefGoogle Scholar
  10. 10.
    Seo, M., Kang, S., Kim, Y., and Ryu, S.-S., Preparation of WC nanoparticles by twice ball milling, Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 191–197.CrossRefGoogle Scholar
  11. 11.
    Huang, Z., Ma, S., Xing, J., and Sun, S., Bulk Cr7C3 compound fabricated by mechanical ball milling and plasma activated sintering, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 204–211.CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Zhu, M., and Wang, C.Y., Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, no. 4, pp. 329–333.CrossRefGoogle Scholar
  13. 13.
    Hewitt, S.A. and Kibble, K.A., Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 6, pp. 937–948.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Blagoveshchenskiy
    • 1
  • N. V. Isaeva
    • 1
  • M. A. Sinaiskiy
    • 1
  • A. B. Ankudinov
    • 1
  • V. A. Zelensky
    • 1
  1. 1.Institute of Metallurgy and Materials Sciences IMETRussian Academy of SciencesMoscowRussia

Personalised recommendations