Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 4, pp 679–686 | Cite as

Effect of the Addition of Thermally Activated Heavy Loam to Portland Cement on the Properties of Cement Stone

  • R. Z. Rakhimov
  • N. R. Rakhimova
  • A. R. Gayfullin
  • V. P. Morozov
Article
  • 4 Downloads

Abstract

In the past decades, metakaolin additives synthesized by the calcination of kaolin clays have been implemented in cement systems. Their scarcity and high cost promotes the studies on the effectiveness of thermally activated additives of common polymineral clays. This article presents the results of research on the effect of thermally activated heavy loam additives to Portland cement. It was shown that additives of 5–15% heavy loam calcined at certain temperatures in the range of 400—600°C and ground to a certain specific surface area of up to 250–500 m2/kg lead to a more significant increase in the strength, density, and water resistance of cement stone than corresponding metakaolin additives with the specific surface area of 1200 m2/kg.

Keywords

Portland cement mineral additive metakaolin heavy loam calcination grinding cement stone compressive strength density water absorption coefficient of softening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ludwig, H.-M., CO2-arme Zemente für nachhaltige Betone, Proc. 19th Int. Baustofftagung “Ibausil,” Weimar, September 16–18, 2015, Fischer, H.B., Boden, C., and Neugebauer, M., Eds., Weimar: Finger-Institute, 2015, vol. 2, pp. 7–32.Google Scholar
  2. 2.
    Ramachandran, V.S., Concrete Admixtures Handbook. Properties, Science and Technology, Amsterdam: Elsevier, 1999.Google Scholar
  3. 3.
    Rakhimov, R.Z. and Rakhimova, N.R., Construction and building materials of the past, present and future, Stroit. Mater., 2013, no. 1, pp. 124–128.Google Scholar
  4. 4.
    Afanas’eva, N.I., The current state of the mineral resource base of pozzolanic additives for the production of cement, Tsem. Ego Primen., 2015, no. 2, pp. 32–34.Google Scholar
  5. 5.
    Castello, L.R., Hernandes, H.J.F., Scrivener, K.L., and Antonic, M., Evolution of calcined clay soils as supplementary cementitious materials, Proc. XIII Int. Congr. on the Chemistry of Cement, Madrid: Inst. Ciencias Construcción, 2011, p.117.Google Scholar
  6. 6.
    He, C., Makovicky, E., and Osbaeck, S., Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects, Cem. Concr. Res., 1995, vol. 25, p. 1961.Google Scholar
  7. 7.
    Thomas, M.D.A., Hopkins, D.S., Perreault, M., and Cail, K., Ternary cement in Canada, Concr. Int., 2007, vol. 29, no. 7, pp. 59–64.Google Scholar
  8. 8.
    Shehata, M.H. and Thomas, M.D.A., Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete, Cem. Concr. Res., 2002, vol. 32, no. 3, pp. 341–349.CrossRefGoogle Scholar
  9. 9.
    Siddigye, R. and Klaus, I., Influence of metakaolin on the properties of mortar and concrete, Appl. Clay Sci., 2009, vol. 43, nos. 3–4, pp. 392–400.CrossRefGoogle Scholar
  10. 10.
    De Weerdt, K., Kjellsen, K.O., Seellevold, E., and Justnes, H., Synergy between fly ash and limestone powder in ternary cements, Cem. Concr. Compos., 2011, vol. 33, pp. 30–38.CrossRefGoogle Scholar
  11. 11.
    Nehdi, M., Ternary and quaternary cements for sustainable development, Concr. Int., 2001, vol. 24, no. 4, pp. 35–42.Google Scholar
  12. 12.
    Yermilova, E.Yu., Kamalova, Z.A., and Rakhimov, R.Z., Complex organomineral additive for blended portland cement, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 4, pp. 593–597.CrossRefGoogle Scholar
  13. 13.
    Habert, G., Choupay, N., Escadeillas, G., Guillaume, D., and Montel, J.M., Clay content of argillites: Influence on cement based mortars, Appl. Clay Sci., 2009, no. 43, pp. 322–330.CrossRefGoogle Scholar
  14. 14.
    Scrivener, K. and Favier, A., Calcined clays for sustainable concrete, 1st Int. Conf. on Calcined Glays for Sustainable Concrete, Losanna, 2015.CrossRefGoogle Scholar
  15. 15.
    Rakhimov, R.Z., Rakhimova, N.R., and Gaifullin, A.R., Influence of the addition of dispersed fine polymineral calcined clays on the properties of Portland cement paste, Adv. Cem. Res., 2017, vol. 29, no. 1, pp. 21–32.CrossRefGoogle Scholar
  16. 16.
    Roacha, J. and Klinowsry, J., Solid-state MMK students of the structure and reactivity of metakaolinite, Angew. Chem. Int., 1990, vol. 29, no. 5, pp. 553–554.CrossRefGoogle Scholar
  17. 17.
    He, C., Makovicky, E., and Osbaeck, S., Thermal stability and pozzolanic activity of calcined illite, Appl. Clay Sci., 1994, vol. 9, pp. 165–187.CrossRefGoogle Scholar
  18. 18.
    Caleman, N.I. and Mewhinnle, W.R., The soled state of metakaolin-blended ordinary Portland cement, J. Mater. Sci., 2000, vol. 35, no. 11, pp. 2701–2710.CrossRefGoogle Scholar
  19. 19.
    Brykov, A.S., Metakaolins, Tsem. Ego Primen., 2012, nos. 7–8, pp. 36–41.Google Scholar
  20. 20.
    Gorbachev, B.Yu., Development of raw materials base of kaolin in the Russian Federation, Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii “Promyshlennye mineraly: problemy prognoza, otsenki i innovatsionnye tekhnologii osvoeniya mestorozhdeniya” (Proc. Int. Sci.-Pract. Conf. “Industrial Minerals: Forecasts, Exploration, Evaluation, and Advanced Technologies in Exploration of Field Deposits”), Kazan: Kazan. Izd. Dom, 2015, pp. 111–114.Google Scholar
  21. 21.
    Mehta, R.K., Studies of blended cement continuing Santorin Earth, Cem. Concr. Res., 1986, vol. 11, no. 4, pp. 507–512.CrossRefGoogle Scholar
  22. 22.
    Pera, J., Ambrouse, J., and Messi, A., Pozzolanic activity of calcined laterite, Silic. Ind. Ceram. Sci. Technol., 1998, vol. 63, nos. 7–8, pp. 107–111.Google Scholar
  23. 23.
    Tikhonov, V.A., Shpynova, L.B., and Zdanovich, E.V., Getting a new local high-strength binder—glandular clay cement, Materialy soveshchaniya po issledovaniyu i ispol’zovaniyu glin (Proc. Meeting on Study and Use of Clays), Lvov: L’vovsk. Gos. Univ., 1957, pp. 36–41.Google Scholar
  24. 24.
    Ostnor, T., Jusfens, H., Martius-Hammer, T., and Danner, T., Calcined moral as alternative pozzolan, The 7th Central European Congr. on Concrete Engineering “Innovative Materials and Technologies for Concrete Structures,” Balatonfüred, 2011, pp. 151–154.Google Scholar
  25. 25.
    Fernandez, R., Vigil de la Villa, R., Gazsia, R., Rodriges, O., Fias, M., and Villas-Cocina, E., Characterization and pozzolanic activity of a calcined natural zeolite, Proc. XIII JCCE Int. Congr. on the Chemistry of Cement. July 3–8, 2011, Abstracts of Papers, Madrid, 2011, pp.100.Google Scholar
  26. 26.
    Guvalov, A.A. and Kuznetsova, T.V., Influence of volcanic ash of Dzheirangelsk deposit on properties of composite binders, Tekh. Tekhnol. Silik., 2013, vol. 20, no. 3, pp. 2–6.Google Scholar
  27. 27.
    Rakhimov, R.Z., Khaliullin, M.I., and Gaifullin, A.R., Composition and pozzolanic properties of claydite dust, Academia. Arkhit. Stroit., 2013, no. 4, pp. 112–116.Google Scholar
  28. 28.
    Taylor-Lange, S.C., Lamon, E.L., Riding, K.A., and Juenger, M.C.G., Calcined kaolinite-bentonite clay blends as supplementary cementations materials, Appl. Clay Sci., 2015, vol. 108, pp. 84–93.CrossRefGoogle Scholar
  29. 29.
    Gard, N. and Skibsted, J., Pozzolanic reactivity of calcined interstratified illite/smectite (70/30) clay, Cem. Concr. Res., 2016, vol. 79, pp. 101–111.CrossRefGoogle Scholar
  30. 30.
    Rakhimov, R.Z., Rakhimova, N.R., and Gaifullin, A.R., Effect of additives in Portland cement calcined and ground clay with 40% kaolinite on the strength of cement stone, Academia. Arkhit. Stroit., 2015, no. 2, pp. 129–131.Google Scholar
  31. 31.
    Gaifullin, A.R., Rakhimov, R.Z., and Rakhimova, N.R., The influence of clay additives in Portland cement on the compressive strength of the cement stone, Mag. Civ. Eng., 2015, no. 7, pp. 66–73.CrossRefGoogle Scholar
  32. 32.
    Trümer, A. and Ludwig, H.-M., Special durability issues of concretes made with composite cements containing clays, Proc. 19th Int. Baustofftagung “Ibausil,” Weimar, September 16–18, 2015, Fischer, H.B., Boden, C., and Neugebauer, M., Eds., Weimar: Finger-Institute, 2015, pp. 627–634.Google Scholar
  33. 33.
    Lotenbach, B., Scrivener, K., and Hooton, R.D., Supplementary cementitious materials, Cem. Concr. Res., 2011, vol. 41, pp. 1244–1256.CrossRefGoogle Scholar
  34. 34.
    Rakhimov, R.Z. and Rakhimova, N.R., Scientific, experimental, technical-economic and technological prerequisites for control of the structure and properties of filled artificial building composite materials, Gradostroitel’stvo, 2011, no. 4 (14), pp. 75–79; no. 5, pp. 100–103; no. 6, pp. 91–95.Google Scholar
  35. 35.
    Budnikov, P.P., Kolbasov, V.M., and Panteleev, A.S., Interaction of 3Ca·OAl2O3 and 4CaO·Al2O3Fe2O3 with calcium and magnesia carbonates, Dokl. Akad. Nauk SSSR, 1959, vol. 129, no. 5, pp. 1104–1106.Google Scholar
  36. 36.
    Kozlova, V.K., Manokha, A.M., Skakun, V.P., Malova, E.Yu., and Bozhok, E.V., The specific composition of hydration products of composite Portland cement with carbonate-containing additives, Tsem. Ego Primen., 2014, no. 4, pp. 102–105.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. Z. Rakhimov
    • 1
  • N. R. Rakhimova
    • 2
  • A. R. Gayfullin
    • 1
  • V. P. Morozov
    • 3
  1. 1.Kazan State University of Architecture and EngineeringKazanRussia
  2. 2.Faculty of Civil EngineeringTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Kazan Federal UniversityKazanRussia

Personalised recommendations