Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 4, pp 644–648 | Cite as

The Microctructure Formation and the Composite Properties Based on Alginate with Antibacterial Activity

  • A. Yu. Fedotov
  • O. V. Baranov
  • I. S. Pereloma
  • A. A. Egorov
  • I. V. Smirnov
  • Yu. V. Zobkov
  • A. Yu. Teterina
  • V. S. Komlev
Article
  • 7 Downloads

Abstract

The alginate gels microstructure formation regularities that were prepared in situ in a multicomponent system were determined, and their properties were studied. To produce experimental specimens, a combination of cross-linking agents of calcium and zinc salts with inhibitors based on a denatured protein and tricalciumphosphate granules was used. The antibacterial properties of the hydrogels were studied as a function of their composition.

Keywords

hydrogel sodium alginate calcium salts zinc salts denatured protein tricalciumphosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, J. and Tan, H., Alginate-based biomaterials for regenerative medicine applications, Materials, 2013, vol. 6, no. 4, pp. 1285–1309.CrossRefGoogle Scholar
  2. 2.
    Pavlov, N.A., Teterina, A.Yu., Barinov, S.M., Komlev, V.S., and Fedotov, A.Yu., Composite hydrogels based on alginate-reinforced calcium phosphate ceramics for tissue engineering, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 47–49.CrossRefGoogle Scholar
  3. 3.
    Komlev, V.S., Sergeeva, N.S., Fedotov, A.Yu., Sviridova, I.K., Kirsanova, V.A., Akhmedova, S.A., Teterina, A.Yu., Zobkov, Yu.V., Kuvshinova, E.A., Shanskiy, Ya.D., and Barinov, S.M., Investigation of physicochemical and biological properties of composite matrices in a alginate–calcium phosphate system intended for use in prototyping technologies during replacement of bone defects, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 4, pp. 630–634.CrossRefGoogle Scholar
  4. 4.
    Mogosanu, G.D. and Grumezescu, A.M., Natural and synthetic polymers for wounds and burns dressing, Pharm. Int. J. 2014, vol. 463, pp. 127–136.CrossRefGoogle Scholar
  5. 5.
    Siddhesh, N.P. and Kevin, J.E., Alginate derivatization: a review of chemistry, properties and applications, Biomaterials, 2012, vol. 33, no. 11, pp. 3279–3305.Google Scholar
  6. 6.
    Sime, W.J., Alginates, in Food Gels, Harris, P., Ed., London: Elsevier Applied Science, 1990.Google Scholar
  7. 7.
    Lee, K.Y. and Mooney, D.J., Alginate: properties and biomedical applications, Progr. Polym. Sci., 2012, vol. 37, no. 1, pp. 106–126.CrossRefGoogle Scholar
  8. 8.
    Shchipunov, Yu.A., Koneva, E.L., and Postnova, I.V., Homogeneous alginate gels: phase behavior and rheological properties, Polym. Sci., Ser. A, 2002, vol. 44, no. 7, pp. 758–766.Google Scholar
  9. 9.
    Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Calcium Phosphate Based Bioceramics), Moscow: Nauka, 2005.Google Scholar
  10. 10.
    Komlev, V.S., Barinov, S.M., and Koplik, E.V., A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release, Biomaterials, 2002, vol. 23, pp. 3449–3454.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Fedotov
    • 1
  • O. V. Baranov
    • 1
  • I. S. Pereloma
    • 1
  • A. A. Egorov
    • 1
  • I. V. Smirnov
    • 1
  • Yu. V. Zobkov
    • 1
  • A. Yu. Teterina
    • 1
  • V. S. Komlev
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations