Advertisement

Gyroscopy and Navigation

, Volume 9, Issue 4, pp 352–357 | Cite as

Features of Network Navigation Systems Construction for Surface Consumers Using Offshore Reference Points

  • A. P. AleshkinEmail author
  • I. G. Arkhipova
  • T. O. Myslivtsev
  • S. V. Nikiforov
  • V. N. Polienko
  • A. A. Semenov
Article
  • 5 Downloads

Abstract

The paper addresses the problem of required positioning accuracy to be provided for a marine consumer. To improve the reliability of navigation measurements, an option of system implementation comprising both stationary onshore facilities and mobile offshore ones is proposed. In order to ensure appropriate range and accuracy of navigation using surface radio navigation aids (RNA), it is proposed to employ medium-wave radiation. Specific features of navigation measures within the selected range are studied in detail, which made it possible for the authors to develop particular technical recommendations and to formulate the accuracy estimations of marine consumer positioning using the proposed solutions under different conditions.

Keywords

position measurement positioning consumer navigation reference points radio navigation systems medium waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivkin, B.S., Analiticheskii obzor sostoyaniya issledovanii i razrabotok v oblasti navigatsii za rubezhom (Analytical Review of Navigation Research and Development Abroad), St. Petersburg: Concern CSRI Elektropribor, JSC, 2017.Google Scholar
  2. 2.
    Radio Navigation Plan of the Russian Federation, approved by the Order No. 1177 of the Ministry of Industries and Trade of the Russian Federation, 31 August, 2011.Google Scholar
  3. 3.
    Safonov, A.V., Increasing the accuracy of positioning of medium-wave radio navigation systems, Cand. Sci. (Eng.) Dissertation, Moscow, 2004, 124 p.Google Scholar
  4. 4.
    Dolukhanov, M.P., Rasprostranenie radiovoln (Radio Waves Propagation), Study Book, Moscow: Svyaz’, 1972.Google Scholar
  5. 5.
    Ortikov, M.Yu., Shemelov, V.A., Shishigin, I.V., and Troitsky, B.V., Ionospheric index of solar activity based on the data measurements of the spacecraft signals characteristics, Journal of Atmospheric and Solar-Terrestrial Physics, 2003, no. 65, pp. 1425–1430.CrossRefGoogle Scholar
  6. 6.
    IRI-Plas Ionosphere Model[online], available at: https://doi.org/ftp.izmiran.ru/pub/izmiran/SPIM/.
  7. 7.
    Al’pert, Ya.L., Rasprostranenie elektromagnitnykh voln i ionosfera (Electromagnetic Waves Propagation and Ionosphere), Moscow: Nauka, 1972.Google Scholar
  8. 8.
    Kinkul’kin, I.E., Rubtsov, V.D., and Fabrik, M.A., Fazovyi metod opredeleniya koordinat (Phase Method of Coordinates Determination), Moscow, Sovetskoe radio, 1979.Google Scholar
  9. 9.
    Himmelblau, D., Applied Nonlinear Programming, Moscow, Mir, 1975 (Russian transl.).zbMATHGoogle Scholar
  10. 10.
    Arkhipova, I.G., and Polienko, V.N., Method of remote measurement of impedance and HF transmission antenna matching with feeder, Voprosy radioelektroniki, 2016, no. 9, pp. 71–73.Google Scholar
  11. 11.
    Aleshkin, A.P., Makarov, A.A., Ivanov, D.V., and Ipatov, A.V., Improvement of coordinate and time navigation support by developing the technology of mobile radio-interferometric complexes with long baseline, Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2017, vol. 60, no. 6, pp. 529–537.CrossRefGoogle Scholar
  12. 12.
    Yanzhura, A.S., Osadchii, A.I., and Bushmanov, S.M., The interface of underwater-automated systems to a satellite link, Informatsiya i kosmos, 2017, no. 4, pp. 59–63.Google Scholar
  13. 13.
    Belov, L.Ya., Parshin, P.N., Tyulyakov, A.E., and Shchennikov, D.L., The state system of the unified time and reference frequencies “The Goal” for the Ministry of Defense of the Russian Federation; its current status and development opportunities, Radionavigatsiya i vremya, 2016, no. 2, pp. 3–16.Google Scholar
  14. 14.
    Zarubin, S.P., Contribution of the Russian Institute of Radionavigation and Time in land-based RNS development, Radionavigatsiya i vremya, 2017, no. 3, pp. 75–85.Google Scholar
  15. 15.
    Khokhlov, N.S., Improvement of CTNS reliability for the Arctic transport and technological systems under adverse conditions, Proc. of the 1st St. Petersburg Arctic Congress “Arctic: the Territory of Integrated Competences”, March 2018.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Aleshkin
    • 1
    Email author
  • I. G. Arkhipova
    • 1
  • T. O. Myslivtsev
    • 1
  • S. V. Nikiforov
    • 1
  • V. N. Polienko
    • 1
  • A. A. Semenov
    • 1
  1. 1.Mozhaiskiy Military Space AcademySt. PetersburgRussia

Personalised recommendations