Advertisement

Vapor-Phase Protection of Zinc from Atmospheric Corrosion by Low-Volatile Corrosion Inhibitors

  • O. A. GoncharovaEmail author
  • A. Yu. Luchkin
  • Yu. I. Kuznetsov
  • N. N. Andreev
CORROSION INHIBITORS

Abstract

The atmospheric corrosion resistance of metals can be reached by the formation of ultrathin protective films on their surface. Over recent years, a fundamentally new feasibility of the nanodimension films on metals capable of ensuring high atmospheric corrosion resistance of metals at least for the period of transportation and in-process storage of the metals was studied. The method of formation of such films by semivolatile nontoxic compounds capable of being adsorbed on metal surface from gas phase at increased temperature (chamber inhibitors) was proposed for this purpose. It is based on the use of such low-volatile organic inhibitors, which are prone to chemisorption on protected metal, and, as a consequence, can provide the stability of the adsorbed layers and long protection after-effect. It was shown by the complex of accelerated corrosion, electrochemical, and optical techniques that the treatment of zinc by vapors of low-volatile corrosion inhibitors at increased temperature and suitable compilation of the reagents results in the formation of the adsorption film with the effect of the long protection after-effect.

Keywords:

atmospheric corrosion low-volatile organic inhibitors chamber method protective films 

Notes

ACKNOWLEDGMENTS

The investigations were supported by the RSF (Project number 17-13-01413 “Fundamental principles of creation of ultrathin passivating organic films on metals for protection against atmospheric corrosion”).

REFERENCES

  1. 1.
    Mikhailov, A.A., Panchenko, Yu.M., and Kuznetsov, Yu.I., Atmosfernaya korroziya i zashchita metallov (Atmospheric Corrosion and Protection of Metals), Tambov: Izd. Pershina, 2016.Google Scholar
  2. 2.
    Rozenfel’d, I.L. and Persiantseva, V.P., Ingibitory atmosfernoi korrozii (Inhibitors of Atmospheric Corrosion), Moscow: Nauka, 1985.Google Scholar
  3. 3.
    Fiaud, C., Theory and Practice of Vapour Phase Inhibitors. European Federation of Corrosion, London: The Institute of Materials, 1994.Google Scholar
  4. 4.
    Chen, Z., Huang, L., Zhang, G., Qiu, Yu., and Guo, X., Corros. Sci., 2012, vol. 65, no. 12, pp. 214–222.CrossRefGoogle Scholar
  5. 5.
    Andreev, N.N. and Kuznetsov, Usp. Khim., 2005, vol. 74, no. 8, pp. 755–767.CrossRefGoogle Scholar
  6. 6.
    Andreev, N.N. and Kuznetsov, Yu.I., Int. J. Corros. Scale Inhib., 2012, no. 1, pp. 16–25.Google Scholar
  7. 7.
    Andreev, N.N. and Kuznetsov, Yu.I., Int. J. Corros. Scale Inhib., 2012, no. 2, pp. 146–153.Google Scholar
  8. 8.
    Andreev, N.N. and Kuznetsov, Yu.I., Int. J. Corros. Scale Inhib., 2013, no. 1, pp. 39–52.Google Scholar
  9. 9.
    Andreev, N.N., Goncharova, O.A., and Vesely, S.S., Int. J. Corros. Scale Inhib., 2013, no. 2, pp. 162–193.Google Scholar
  10. 10.
    Ovchinnikova, N.S., Kuznetsov, Yu.I., Persiantseva, V.P., and Zhuravlev, L.T., Kolloidn. Zh., 1975, vol. 37, no. 5, pp. 991–995.Google Scholar
  11. 11.
    Bulgakova, R.A., Dorfman, A.M., Kuznetsov, Yu.I., Lyakhovich, A.M., Povstugar, V.I., Sokolova, N.P., and Zamyatina, O.V., Prot. Met., 1996, vol. 32, no. 1, pp. 42–49.Google Scholar
  12. 12.
    Andreeva, N.P., Dorfman, A.M., Kuznetsov, Yu.I., and Lyakhovich, A.M., Prot. Met., 1996, vol. 32, no. 4, pp. 403–406.Google Scholar
  13. 13.
    Kuznetsov, Yu.I., Andreev, N.N., Andreeva, N.P., Tolkachev, D.V., and Fedotova, T.V., Prot. Met., 1996, vol. 32, no. 5, pp. 483–487.Google Scholar
  14. 14.
    Andreev, N.N., Andreeva, N.P., Vartapetyan, R.Sh., Kuznetsov, Yu.I., and Fedotova, T.V., Zashch. Met., 1996, vol. 32, no. 5, pp. 528–533.Google Scholar
  15. 15.
    Kuznetsov, Yu.I., Proc. Conference CORROSION-98, San Diego, CA: NACE Int., 1998, p. 242.Google Scholar
  16. 16.
    Andreev, N.N. and Kuznetsov, Yu.I., Reviews on Corrosion Inhibitor Science and Technology, Raman, A., Labine, P., and Quraishi, V.A., Eds., Houston, TX: NACE Int., 2004, vol. 3, pp. 11-8–11-18.Google Scholar
  17. 17.
    Ishizaki, T., Okido, M., Masuda, Y., Saito, N., and Sakamoto, M., Langmuir, 2011, vol. 27, no. 10, pp. 6009–6017.  https://doi.org/10.1021/la200122x CrossRefGoogle Scholar
  18. 18.
    Luchkin, A.Yu., Goncharova, O.A., Andreev, N.N., and Kuznetsov, Yu.I., Prakt. Protivokorroz. Zashch., 2017, no. 4 (86), pp. 7–12.Google Scholar
  19. 19.
    Luchkin, A.Yu., Goncharova, O.A., Andreev, N.N., Kuznetsov, Yu.I., and Andreeva, N.P., Korroz.: Mater., Zashch., 2017, no. 11, pp. 25–31.Google Scholar
  20. 20.
    Luchkin, A.Yu., Goncharova, O.A., Andreev, N.N., and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2017, no. 12, pp. 20–27.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. A. Goncharova
    • 1
    Email author
  • A. Yu. Luchkin
    • 1
  • Yu. I. Kuznetsov
    • 1
  • N. N. Andreev
    • 1
  1. 1.Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscow,Russia

Personalised recommendations