Determination of Physico-Mechanical Properties and High Temperature Behavior of Stressed Reinforcing Steels

  • Gökhan KürklüEmail author


This study experimentally investigated the effect of fire-induced high temperature on different grades of stressed steels. The steel in the reinforced concrete structural element is under the influence of static and dynamic loads. The main approach of this study is based on stresses caused by static and dynamic loads on steel reinforcing bars (rebars) and the effect of high temperature during this process. Three different grades of steel (smooth S220, ribbed S420, Tempcore ribbed B500C) in three different diameters (∅12, ∅16, ∅20) were used. The three loading conditions taken into account for reinforced steels subjected to high temperatures were the design yield strength (fyd: fyk/1.15), the characteristic yield strength of steel rebar (fyk) and the exceeding yield strength (fye: fyk × 1.15). Three different temperatures (75, 150 and 300°C) were applied depending on concrete cover thickness and fire duration. Physical and mechanical properties of the test specimens were determined prior to high temperature. Metallographic investigations, hardness measurement, impact toughness, oxidation layer measurement, electrochemical oxidation test and tensile test were performed on steel rebars. Results showed that pre-tension and high temperatures caused drastic changes in steel characteristics. Results provided information about how steels commonly used in the construction of reinforced concrete structures are affected by fire and about at what stage of the fire they start to be affected.


steel grade physical and mechanical properties high temperature fire reinforcing steel 



This work was supported by Afyon Kocatepe University Scientific Research Unit. Project no. AKU BAP: 16.KARİYER.185.


  1. 1.
    Kodur, V.K. and Agrawal, A., Fire Technol., 2016, vol. 52, no. 4, p. 967.CrossRefGoogle Scholar
  2. 2.
    Beitel, J. and Iwankiw, N., Fire Prot. Eng., 2005, vol. 27, p. 42.Google Scholar
  3. 3.
    Alexander, M.G., Beushausen, H.D., Dehn, F., and Moyo, P., Concrete Repair, Rehabilitation and Retrofitting II, London: Taylor and Francis, 2009.Google Scholar
  4. 4.
    Awoyera, P.O., Akinwumi, I.I., Ede, A.N., and Olofinnade, O.M., IOSR J. Mech. Civ. Eng., 2014, vol. 11, no. 4, p. 17.Google Scholar
  5. 5.
    Dougherty, L.M., Cerreta, E. K., Gray, G.T., Trujillo, C.P., Lopez, M.F., Vecchio, K.S., and Kusinski, G.J., Metall. Mater. Trans. A, 2009, vol. 40, no. 8, p. 1835.CrossRefGoogle Scholar
  6. 6.
    Smith, C.I., Kirby, B.R., Lapwood, D.G., Cole, K.J., Cunningham, A.P., and Preston, R.R., Fire Saf. J., 1981, vol. 4 no. 1, p. 21.CrossRefGoogle Scholar
  7. 7.
    Jansson, R., MATEC Web Conf., 2013, vol. 6, p. 01001.Google Scholar
  8. 8.
    Bošnjak, J., Sharma, A., and Öttl, C., Mater. Struct., 2018, vol. 51 no. 1, p. 13.CrossRefGoogle Scholar
  9. 9.
    Ergün, A., Kürklü, G., Serhat, B.M., and Mansour, M.Y., Fire Saf. J., 2013, vol. 55, p. 160.CrossRefGoogle Scholar
  10. 10.
    Kodur, V.K.R. and Alogla, S.M., Mater. Struct., 2017, vol. 50, no. 1, p. 27.CrossRefGoogle Scholar
  11. 11.
    Wu, B., Li, Y.H., and Chen, S.L., Fire Technol., 2010, vol. 46, no. 1, p. 231.CrossRefGoogle Scholar
  12. 12.
    Shah, A.H., Sharma, U.K., Bhargava, P., Reddy, G.R., Singh, T., and Lakhani, H., in Advances in Structural Engineering, New Delhi: Springer, 2015.Google Scholar
  13. 13.
    Topçu, İ.B. and Karakurt, C., Res. Lett. Mater. Sci., 2008, vol. 2008, Article ID 814137.CrossRefGoogle Scholar
  14. 14.
    Kumar, A. and Kumar, V., J. Inst. Eng. (India), Civ. Eng. Div., 2003, vol. 84, p. 165.Google Scholar
  15. 15.
    Li, G., Wang, P., and Shouchao, J., J. Constr. Steel Res., 2007, vol. 63, no. 9, p. 1175.CrossRefGoogle Scholar
  16. 16.
    Liu, T.C.H., Fahad, M.K., and Davies, J.M., J. Constr. Steel Res., 2002, vol. 58, no. 9, p. 1211.CrossRefGoogle Scholar
  17. 17.
    Correia, A.J.M. and Rodrigues, J.P.C., J. Constr. Steel Res., 2011, vol. 67, no. 4, p. 593.CrossRefGoogle Scholar
  18. 18.
    Khalaf, J., Huang, Z., and Fan, M., Comput. Struct., 2016, vol. 162, p. 1.CrossRefGoogle Scholar
  19. 19.
    Huang, Z., Eng. Struct., 2010, vol. 32, no. 11, p. 3660.CrossRefGoogle Scholar
  20. 20.
    Diederichs, U. and Schneider, U., Mag. Concr. Res., 1981, vol. 33, p. 75.CrossRefGoogle Scholar
  21. 21.
    Morley, P. and Royles, R., Mag. Concr. Res., 1983, vol. 35, p. 67.CrossRefGoogle Scholar
  22. 22.
    Haddad, R., Al-Saleh, R., Al-Akhras, N.M., Fire Saf. J., 2008, vol. 43, p. 334.CrossRefGoogle Scholar
  23. 23.
    Hassan, S., J. Eng. Dev., 2012, vol. 16, p. 30.Google Scholar
  24. 24.
    Bingöl, A.F. and Gül, R., Fire Saf. J., 2009, vol. 44, p. 854.CrossRefGoogle Scholar
  25. 25.
    Khoury, G.A., Prog. Struct. Eng. Mater., 2000, vol. 2, no. 4, p. 429.CrossRefGoogle Scholar
  26. 26.
    Tariq, F. and and Bhargava, P., Constr. Build. Mater., 2018, vol. 190, p. 551.CrossRefGoogle Scholar
  27. 27.
    Elghazouli, A.Y., Cashell, K.A., and Izzuddin, B.A., Fire Saf. J., 2009, vol. 44, no. 6, p. 909.CrossRefGoogle Scholar
  28. 28.
    Felicetti, R., Gambarova, P.G., and Meda, A., Constr. Build. Mater., 2009, vol. 23, no. 12, p. 3546.CrossRefGoogle Scholar
  29. 29.
    Neves, I.C., Rodrigues, J.P.C., and Loureiro, A.D.P., J. Mater. Civ. Eng., 1996, vol. 8, no. 4, p. 189.CrossRefGoogle Scholar
  30. 30.
    Wang, W.Y., Liu, B., and Kodur, V., J. Mater. Civ. Eng., 2012, vol. 25, no. 2, p. 174.CrossRefGoogle Scholar
  31. 31.
    Cooke, G.M., Fire Saf. J., 1988, vol. 13, no. 1, p. 45.CrossRefGoogle Scholar
  32. 32.
    Qiang, X., Bijlaard, F.S., and Kolstein, H., Eng. Struct., 2012, vol. 35, p. 1.CrossRefGoogle Scholar
  33. 33.
    Lee, J., Engelhardt, M.D., and Taleff, E.M., Eng. J., 2012, vol. 49, no. 1, p. 33.Google Scholar
  34. 34.
    Shen, R., Rong, K., and Feng, L.Y., Build. Sci. Res. Sichuan, 1991, vol. 17, no. 2, p. 5.Google Scholar
  35. 35.
    Wang, Q., Wu, H., Xu, Y., Yang, Y., and Huo, Z., J. Build. Struct., 2011, vol. 32, no. 2, p. 120.Google Scholar
  36. 36.
    Li, Y., Cao, S., Liang, H., Ni, X., and Jing, D., Eng. Struct., 2018, vol. 172, p. 497.CrossRefGoogle Scholar
  37. 37.
    Tavallali, H., Lepage, A., Rautenberg, J.M., and Pujol, S., ACI Struct. J., 2014, vol. 111, no. 5, p. 1037.CrossRefGoogle Scholar
  38. 38.
    Chun, S.C., ACI Struct. J., 2015, vol. 112, no. 6, p. 679.CrossRefGoogle Scholar
  39. 39.
    Ibarra, L. and Bishaw, B., ACI Struct. J., 2016, vol. 113, p. 1.CrossRefGoogle Scholar
  40. 40.
    Alaee, P. and Li, B., Eng. Struct., 2017, vol. 145, p. 305.CrossRefGoogle Scholar
  41. 41.
    Ou, Y.C. and Kurniawan, D.P., ACI Struct. J., 2015, vol. 112, no. 1, p. 12.Google Scholar
  42. 42.
    Sokoli, D. and Ghannoum, W.M., ACI Struct. J., 2016, vol. 113, no. 3, p. 605.CrossRefGoogle Scholar
  43. 43.
    Proestos, G.T., Bae, G.M., Cho, J.Y., Bentz, E.C., and Collins, M.P., ACI Struct. J., 2016, vol. 113, no. 5, p. 917.CrossRefGoogle Scholar
  44. 44.
    Cheng, M.Y., Hung, S.C., Lequesne, R.D., and Lepage, A., ACI, 2016. Cheng, M.Y., Hung, S.C., Lequesne, R.D., and Lepage, A., ACI Struct. J., 2016, vol. 113, no. 5, p. 1065.CrossRefGoogle Scholar
  45. 45.
    Alaee, P. and Li, B., J. Struct. Eng., 2017, vol. 143, no. 7, p. 04017038.CrossRefGoogle Scholar
  46. 46.
    Rojob, H. and El-Hacha, R., Eng. Struct., 2018, vol. 169, p. 107.CrossRefGoogle Scholar
  47. 47.
    ACI 216R-89: Guide for Determining the Fire Endurance of Concrete Elements, 1989.Google Scholar
  48. 48.
    EN 1992-1-2: Eurocode 2: Design of Concrete Structures—Part 1-2: General Rules – Structural Fire Design, 2004.Google Scholar
  49. 49.
    TS 708: Steel for the Reinforcement of Concrete—Reinforcing Steel, 2016.Google Scholar
  50. 50.
    ASTM A615/A615M-18e1: Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, West Conshohocken, PA: ASTM Int., 2018.Google Scholar
  51. 51.
    TS 500: Requirements for design and construction of reinforced concrete structures, 2000.Google Scholar
  52. 52.
    Apostolopoulos, C.A. and Michalopoulos, D., J. Mater. Eng. Perform., 2007, vol. 16, no. 1, p. 63.CrossRefGoogle Scholar
  53. 53.
    ASTM E23-18: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, West Conshohocken, PA: ASTM Int., 2018.Google Scholar
  54. 54.
    Nikolaou, J. and Papadimitriou, G. D., Int. J. Impact Eng., 2005, vol. 31, no. 8, p. 1065.CrossRefGoogle Scholar
  55. 55.
    Pektaş, F. M., Master Thesis, AKU: Inst. of Nat. and App. Sci., 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Afyon Kocatepe University, Faculty of Engineering, Department of Civil EngineeringAfyonkarahisarTurkey

Personalised recommendations