Advertisement

Quartz Sorption Sensors for Aceton Vapor

  • V. N. SimonovEmail author
  • A. A. Fomkin
  • D. A. Vlasov
  • T. Yu. Grankina
INVESTIGATION METHODS FOR PHYSICOCHEMICAL SYSTEMS
  • 6 Downloads

Abstract

The ratios between the film-sorbent parameters, sensitivity, and quartz sorption sensors’ sensitivity threshold have been obtained and analyzed. It has been demonstrated that, for the sorption sensors of vapors and gases based on polymer films, there exists a range of optimal values of thickness caused by its effect on the elastic properties. For acetone vapor sensors with a film made of polymethyl methacrylate (PMMA), this range is equal to 0.4–0.6% of the sensor’s plate thickness at the film deposition on both sides of the plate.

Keywords:

sensors quartz crystal gravimetry QCM piezoelectric resonator polymer films sorption isotherm 

Notes

FUNDING

The present work was performed within the framework of project no. 16-07-0097-а supported by the Russian Foundation for Basic Research under the Competitiveness Program of National Research Nuclear University Moscow Engineering Physics Institute.

REFERENCES

  1. 1.
    Lucklum, R. and Hauptmann, P., Anal. Bioanal. Chem., 2006, vol. 384, pp. 667–682.CrossRefGoogle Scholar
  2. 2.
    Prakrankamanant, P., J. Med. Assoc. Thailand, 2014, vol. 97, no. 4, Suppl., pp. S56–S64.Google Scholar
  3. 3.
    van der Werff, M.J., Yuan, Y.J., and Xu, W.L., Proc. 1st Int. Conference on Sensing Technology, Palmerston North, November 21–23, 2005, pp. 500–504.Google Scholar
  4. 4.
    Xi, J., Chen, J.Y., Garcia, M.P., and Penn, L.S., J. Biochips Tissue Chips, 2013.  https://doi.org/10.4172/2153-0777.S5-001
  5. 5.
    Simonov, V.N., Vlasov, D.A., Fomkin, A.A., Markova, E.B., and Solovtsova, O.V., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 4, p. 609.Google Scholar
  6. 6.
    Cao, Z., Murayama, K., and Aoki, K., Anal. Chim. Acta, 2001, vol. 448, nos. 1–2, pp. 47–59.CrossRefGoogle Scholar
  7. 7.
    Russell, S.P. and Weinkauf, D.H., Polymer, 2001, vol. 42, pp. 2827–2836.CrossRefGoogle Scholar
  8. 8.
    Dmitrienko, M.A., Prakt. Med. Gastroenterol., 2014, vol. 77, no. 1, pp. 192–200.Google Scholar
  9. 9.
    Du, B. and Johannsmann, D., Langmuir, 2004, vol. 20, pp. 2809–2812.CrossRefGoogle Scholar
  10. 10.
    Johannsmann, D., J. Appl. Phys., 2001, vol. 89, no. 11, pp. 6356–6364.CrossRefGoogle Scholar
  11. 11.
    Morray, B., Li, S., Hossenlopp, J., Cernosek, R., and Josse, F., Proc. IEEE Int. Frequency Control Symposium and PDA Exhibition, New Orleans, LA, 2002.Google Scholar
  12. 12.
    Simonov, V.N., Fomkin, A.A., and Vlasov, D.A., Meas. Tech., 2017, vol. 59, no. 10, pp. 1120–1124.  https://doi.org/10.1007/s11018-017-1102-x CrossRefGoogle Scholar
  13. 13.
    Deng, C., Zhang, J., Yu, X., Zhang, W., and Zhang, X., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2004, vol. 810, pp. 269–275.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. N. Simonov
    • 1
    • 2
    Email author
  • A. A. Fomkin
    • 1
  • D. A. Vlasov
    • 1
  • T. Yu. Grankina
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations