Advertisement

Hybrid Organosilica Coatings for Solid Phase Microextraction: Highly Efficient Adsorbents for Determination of Trace Parabens

  • B. A. Shnayder
  • V. M. Levchyk
  • M. F. Zui
  • N. G. KobylinskaEmail author
NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • 1 Downloads

Abstract

New hybrid organosilica coatings with different amount of alkyl functional groups on a quartz fiber for solid phase microextraction (SPME) have been obtained by the of sol–gel synthesis in the presence of polyethylene glycol (PEG). The structural-sorption properties of the synthesized silica coatings of various compositions have been studied. According to the thermogravimetric analysis, the main thermolysis of the adsorption coatings’ organic layer was observed at temperatures higher than 350°C. The effect of synthesis conditions on the thermal stability of the obtained PEG-based organosilica coating has been studied. It has been established that the textural characteristics of the produced coatings for SPME and their adsorption properties can be controlled using different PEG and silica precursors and the equivalence ratio in the reaction mixture. Good prospects of application of the fabricated coatings for SPME have been demonstrated in paraben extraction and concentration in aqueous solutions at 24°C and pH 3.0–5.5 with their subsequent gas chromatography determination. The suggested technique was characterized by good accuracy and reproducibility (RSD ≤ 2.3%). Comparative studies of the obtained hybrid organosilica coatings for SPME with a commercially available fiber with a bipolar polymer coating—divinylbenzene/carboxen/polydimethylsiloxane—have been conducted.

Keywords:

Fiber solid phase microextraction gas chromatography extraxtion and preconcentration sol–gel synthesis polyethylene glycol organosilica coatings 

Notes

REFERENCES

  1. 1.
    Soni, M.G., Taylor, S.L., Greenberg, N.A., and Burdock, G.A., Food Chem. Toxicol., 2002, vol. 40, pp. 1335–1373.CrossRefGoogle Scholar
  2. 2.
    Soni, M.G., Carabin, I.G., and Burdock, G.A., Food Chem. Toxicol., 2005, vol. 43, pp. 985–1015.CrossRefGoogle Scholar
  3. 3.
    Elder, R.L., Int. J. Toxicol., 2008, no. 4, Suppl., pp. 1–82.Google Scholar
  4. 4.
    http://www.ec.europa.eu/health/scientific_committees/ consumer_safety/docs/sccs_o_132.pdf.Google Scholar
  5. 5.
    Frederiksen, H., Jorgensen, N., and Andersson, A.-M., J. Exposure Sci. Environ. Epidemiol., 2011, vol. 21, pp. 262–333.CrossRefGoogle Scholar
  6. 6.
    Farajzadeh, M.A., Djozan, D.J., and Bakhtiyari, R.F., Talanta, 2010, vol. 81, pp. 1360–1367.CrossRefGoogle Scholar
  7. 7.
    Lokhnauth, J.K. and Snow, N.H., Anal. Chem., 2005, vol. 77, pp. 5938–5946.CrossRefGoogle Scholar
  8. 8.
    Zaitsev, V.N. and Zui, M.F., J. Anal. Chem., 2014, vol. 69, no. 8, pp. 715–728.CrossRefGoogle Scholar
  9. 9.
    https://www.sigmaaldrich.com/technical-documents/ articles/analytical/selecting-spmefibers.html.Google Scholar
  10. 10.
    Zhang, Zh., Zhu, L., Ma, Yu., Huang, Y., and Li, G., Analyst, 2013, vol. 138, pp. 1156–1166.CrossRefGoogle Scholar
  11. 11.
    Li, Y., Wang, Y., Zhang, J., and Sun, C., Environ. Monit. Assess., 2012, vol. 184, pp. 4345–4353.CrossRefGoogle Scholar
  12. 12.
    Wong, M.Y., Cheng, W.R., Liu, M.H., Tian, W.C., et al., Talanta, 2012, vol. 101, pp. 307–313.CrossRefGoogle Scholar
  13. 13.
    Li, Z., Ma, R., Bai, Sh., Wang, Ch., and Wang, Z., Talanta, 2014, vol. 119, pp. 498–504.CrossRefGoogle Scholar
  14. 14.
    Wang, T., Chen, Y., Ma, J., Hu, M., et al., Anal. Bioanal. Chem., 2014, vol. 406, no. 20, pp. 4955–4963.CrossRefGoogle Scholar
  15. 15.
    Lopez-Darias, J., Anderson, J.L., Pino, V., and Afonso, A.M., Anal. Bioanal. Chem., 2011, vol. 401, pp. 2965–2976.CrossRefGoogle Scholar
  16. 16.
    He, J., Chen, Si., Jiang, Y., Shen, Y., Zhu, J., Wei, H., Zhang, H., and Lu, K., J. Sep. Sci., 2012, vol. 35, pp. 308–314.CrossRefGoogle Scholar
  17. 17.
    Walles, M., Mullett, W.M., and Pawliszyn, J., J. Chromatogr. A, 2004, vol. 1025, p. 85.CrossRefGoogle Scholar
  18. 18.
    Chong, S.L., Wang, D., Hayes, J.D., Wilhite, B.W., et al., Anal. Chem., 1997, vol. 69, p. 3889.CrossRefGoogle Scholar
  19. 19.
    Kumar, A., Gaurav, M.A.K., Tewary, D.K., and Singh, B., Anal. Chim. Acta, 2008, vol. 610, pp. 1–14.CrossRefGoogle Scholar
  20. 20.
    Piri-Moghadam, H., Nazmul, A.Md., and Pawliszyn, J., Anal. Chim. Acta, 2017, vol. 984, pp. 42–65.CrossRefGoogle Scholar
  21. 21.
    Barczak, M., Mcdonagh, C., and Wencel, D., Microchim. Acta, 2016, vol. 183, no. 7, pp. 2085–2109.CrossRefGoogle Scholar
  22. 22.
    Sarafraz-yazdi, A., Piri-Moghadam, H., Es’haghi, Z., and Sepehr, S., Anal. Methods, 2010, vol. 2, pp. 746–752.CrossRefGoogle Scholar
  23. 23.
    Yu, J., Dong, L., Wu, C., Wu, L., and Xing, J., J. Chromatogr. A, 2002, vol. 978, pp. 37–48.CrossRefGoogle Scholar
  24. 24.
    Pragst, F., Anal. Bioanal. Chem., 2007, vol. 388, pp. 1393–1414.CrossRefGoogle Scholar
  25. 25.
    Ghader, M., Shokoufi, N., Es-haghi, A., and Kargosha, K., Anal. Bioanal. Chem., 2017, vol. 409, no. 29, pp. 6739–6744.CrossRefGoogle Scholar
  26. 26.
    Lopez-Darias, J., Pino, V., Meng, Y., Anderson, J.L., et al., J. Chromatogr. A, 2010, vol. 1217, no. 46, pp. 7189–7197.CrossRefGoogle Scholar
  27. 27.
    Diaz-Alvarez, M., Smith, S.P., Spivak, D.A., and Martin-Esteban, A., J. Sep. Sci., 2016, vol. 39, no. 3, pp. 552–558.CrossRefGoogle Scholar
  28. 28.
    Liu, D., Song, N., Cheng, Y., Chen, D., et al., RSC Adv., 2014, vol. 4, pp. 49153–49160.CrossRefGoogle Scholar
  29. 29.
    Chen, Y. and Sidisky, L.M., Anal. Chim. Acta, 2012, vol. 743, pp. 61–68.CrossRefGoogle Scholar
  30. 30.
    Wu, M., Zhang, H., Zeng, B., and Zhao, F., J. Chromatogr. A, 2015, vol. 1384, pp. 22–27.CrossRefGoogle Scholar
  31. 31.
    Es-haghi, A., Hosseininasa, V., and Bagheri, H., Anal. Chim. Acta, 2014, vol. 813, pp. 48–55.CrossRefGoogle Scholar
  32. 32.
    High Performance Liquid Chromatography in Pesticide Residue Analysis, Tuzimski, T. and Sherma, J., Eds., Boca Raton, FL: CRC Press, 2015, p. 582.Google Scholar
  33. 33.
    Bagheri, H., Piri-moghadam, H., and Ahdi, T., Anal. Chim. Acta, 2012, vol. 742, pp. 45–53.CrossRefGoogle Scholar
  34. 34.
    Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Socrates, G., Ed., Chichester: John Wiley and Sons, 2001.Google Scholar
  35. 35.
    Lisichkin, G.V., Fadeev, A.Yu., Serdan, A.A., and Nesterenko, P.N., Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003.Google Scholar
  36. 36.
    Blaug, S.M. and Grant, D.E., J. Soc. Cosmet. Chem., 1974, vol. 25, no. 9, pp. 495–506.Google Scholar
  37. 37.
    Alexander, K.S., Laprade, B., Mauger, J.W., and Paruta, A.N., J. Pharm. Sci., 1978, vol. 67, no. 5, pp. 624–627.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. A. Shnayder
    • 1
  • V. M. Levchyk
    • 1
  • M. F. Zui
    • 1
  • N. G. Kobylinska
    • 1
    Email author
  1. 1.Faculty of Chemistry, Department of Analytical Chemistry, Shevchenko National University of KyivKyivUkraine

Personalised recommendations