Advertisement

Corrosion Inhibition of Stainless Steel in HCl Solution Using Newly Aniline and o-Anthranilic Acid Copolymer

  • Zeinab Shirazi
  • Mohammad Hossein KeshavarzEmail author
  • Ahmad Nozad Golikand
  • Karim Esmaeilpour
PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • 5 Downloads

Abstract

This paper introduces copolymers of aniline and o-anthranilic acid with different ratio of aniline/o-anthranilic acid (r = 1, 2 and 3) as novel corrosion inhibitors for stainless steel in high-corrosive media. The synthesized polymers were characterized by Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–Vis) and X-ray diffraction (XRD) techniques. After optimization of the aniline/o-anthranilic acid ratio, the inhibition efficiency of the best copolymer was measured for stainless steel in 2 M HCl solution. Electrochemical methods including potentiodynamic polarization and electrochemical impedance spectroscopy were used in different concentrations of copolymer. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the surfaces of the steel after exposed to test solution. It was found that the aniline and o-anthranilic acid copolymer with r = 3 can prevent the penetration of corrosive species into metal surface as protective film on the metal surface by physical and chemical adsorption.

Keywords:

copolymer ratio of aniline/o-anthranilic acid stainless steel acidic media 

Notes

ACKNOWLEDGMENTS

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

REFERENCES

  1. 1.
    Tang, Y., Yang, X., Yang, W., Wan, R., Chen, Y., and Yin, X., Corros. Sci., 2010, vol. 52, pp. 1801–1808.CrossRefGoogle Scholar
  2. 2.
    Khaled, K., Appl. Surf. Sci., 2004, vol. 230, pp. 307–318.CrossRefGoogle Scholar
  3. 3.
    Hong, T., Sun, Y., and Jepson, W., Corros. Sci., 2002, vol. 44, no. 1, pp. 101–112.CrossRefGoogle Scholar
  4. 4.
    Fekry, A. and Ameer, M., Int. J. Hydrogen Energy, 2010, vol. 35, pp. 7641–7651.CrossRefGoogle Scholar
  5. 5.
    Mao, F., Dong, C., and Macdonald, D.D., Corros. Sci., 2015, vol. 98, pp. 192–200.CrossRefGoogle Scholar
  6. 6.
    Thomassen, M., Børresen, B., Hagen, G., and Tunold, R., J. Appl. Electrochem., 2003, vol. 33, pp. 9–13.CrossRefGoogle Scholar
  7. 7.
    Rivera-Grau, L., Casales, M., Regla, I., Ortega-Toledo, D., Ascencio-Gutierrez, J., PorcayoCalderon, J., and Martinez-Gomez, L., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 2491–2503.Google Scholar
  8. 8.
    Keshavarz, M.H., Esmaeilpour, K., Golikand, A.N., and Shirazi, Z., Z. Anorg. Allg. Chem., 2016, vol. 642, pp. 906–913.CrossRefGoogle Scholar
  9. 9.
    Shirazi, Z., Keshavarz, M.H., Esmaeilpour, K., and Golikand, A.N., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, pp. 359–372.CrossRefGoogle Scholar
  10. 10.
    Gao, G. and Liang, C., Electrochim. Acta, 2007, vol. 52, pp. 4554–4559.CrossRefGoogle Scholar
  11. 11.
    Agrawal, J. P., High Energy Materials: Propellants, Explosives and Pyrotechnics, Weinheim: Wiley, 2010.CrossRefGoogle Scholar
  12. 12.
    Klapötke, T. M., Chemistry of High-Energy Materials, Berlin: Walter de Gruyter, 2015.CrossRefGoogle Scholar
  13. 13.
    Keshavarz, M.H., Pouretedal, H.R., and Semnani, A., J. Hazard. Mater., 2007, vol. 141, pp. 803–807.CrossRefGoogle Scholar
  14. 14.
    Keshavarz, M.H., J. Hazard. Mater., 2009, vol. 171, pp. 786–796.CrossRefGoogle Scholar
  15. 15.
    Keshavarz, M.H., Pouretedal, H.R., and Semnani, A., J. Hazard. Mater., 2009, vol. 167, pp. 461–466.CrossRefGoogle Scholar
  16. 16.
    Keshavarz, M.H., Hayati, M., Ghariban-Lavasani, S., and Zohari, N., Cent. Eur. J. Energ. Mater., 2015, vol. 12, pp. 215–227.Google Scholar
  17. 17.
    Keshavarz, M.H., Hayati, M., Ghariban-Lavasani, S., and Zohari, N., Z. Anorg. Allg. Chem., 2016, vol. 642, pp. 182–188.CrossRefGoogle Scholar
  18. 18.
    El-Maksoud, S.A. and Fouda, A., Mater. Chem. Phys., 2005, vol. 93, pp. 84–90.CrossRefGoogle Scholar
  19. 19.
    Kanojia, R. and Singh, G., Surf. Eng., 2005, vol. 21, pp. 180–186.CrossRefGoogle Scholar
  20. 20.
    Raicheva, S., Aleksiev, B., and Sokolova, E., Corros. Sci., 1993, vol. 34, pp. 343–350.CrossRefGoogle Scholar
  21. 21.
    Raj, X.J. and Rajendran, N., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 348–366.Google Scholar
  22. 22.
    Sanya, B., Prog. Org. Coat., 1981, vol. 9, pp. 165–236.CrossRefGoogle Scholar
  23. 23.
    Keshavarz, M.H., Klapötke, T.M., and Sućeska, M., Propellants, Explos., Pyrotech., 2017, vol. 42, pp. 854–856.CrossRefGoogle Scholar
  24. 24.
    Keshavarz, M.H. and Klapötke, T.M., Energetic Compounds: Methods for Prediction of their Performance, Berlin: Walter de Gruyter, 2017.CrossRefGoogle Scholar
  25. 25.
    Zarrouk, A., Zarrok, H., Salghi, R., Hammouti, B., Bentiss, F., Touir, R., and Bouachrine, M., J. Mater. Environ. Sci., 2013, vol. 4, pp. 177–192.Google Scholar
  26. 26.
    Goudarzi, N. and Farahani, H., Anti-Corros. Methods Mater., 2013, vol. 61, pp. 20–26.CrossRefGoogle Scholar
  27. 27.
    Tao, Z., Zhang, S., Li, W., and Hou, B., Corros. Sci., 2009, vol. 51, pp. 2588–2595.CrossRefGoogle Scholar
  28. 28.
    Benchikh, A., Aitout, R., Makhloufi, L., Benhaddad, L., and Saidani, B., Desalination, 2009, vol. 249, pp. 466–474.CrossRefGoogle Scholar
  29. 29.
    Tallman, D., Pae, Y., and Bierwagen, G., Corrosion, 1999, vol. 55, pp. 779–786.CrossRefGoogle Scholar
  30. 30.
    Tallman, D.E., Spinks, G., Dominis, A., and Wallace, G.G., J. Solid State Electrochem., 2002, vol. 6, pp. 73–84.CrossRefGoogle Scholar
  31. 31.
    Thirumoolan, D., Katkar, V.A., Gunasekaran, G., Kanai, T., and Basha, K.A., Prog. Org. Coat., 2014, vol. 77, pp. 1253–1263.CrossRefGoogle Scholar
  32. 32.
    Finšgar, M., Fassbender, S., Nicolini, F., and Milošev, I., Corros. Sci., 2009, vol. 51, pp. 525–533.CrossRefGoogle Scholar
  33. 33.
    Umoren, S., Ebenso, E., Okafor, P., and Ogbobe, O., Pigm. Resin Technol., 2006, vol. 35, pp. 346–352.CrossRefGoogle Scholar
  34. 34.
    Ebenso, E., Ekpe, U., Umoren, S., Jackson, E., Abiola, O., and Oforka, N., J. Appl. Polym. Sci., 2006, vol. 100, pp. 2889–2894.CrossRefGoogle Scholar
  35. 35.
    Umoren, S. and Ebenso, E., Indian J. Chem. Technol., 2008, vol. 15, pp. 355–363.Google Scholar
  36. 36.
    Arthur, D.E., Jonathan, A., Ameh, P.O., and Anya, C., Int. J. Ind. Chem., 2013, vol. 4, p. 2.CrossRefGoogle Scholar
  37. 37.
    Ali Fathima Sabirneeza, A. and Subhashini, S., J. Appl. Polym. Sci., 2013, vol. 127, pp. 3084–3092.CrossRefGoogle Scholar
  38. 38.
    Camalet, J., Lacroix, J., Aeiyach, S., Chane-Ching, K., and Lacaze, P., Synth. Met., 1998, vol. 93, pp. 133–142.CrossRefGoogle Scholar
  39. 39.
    Chen, S.A. and Fang, W.G., Macromolecules, 1991, vol. 24, pp. 1242–1248.CrossRefGoogle Scholar
  40. 40.
    Huang, W.-S., Humphrey, B.D., and MacDiarmid, A.G., J. Chem. Soc., Faraday Trans. 1, 1986, vol. 82, pp. 2385–2400.CrossRefGoogle Scholar
  41. 41.
    Golikand, A.N., Bagherzadeh, M., and Shirazi, Z., Electrochim. Acta, 2017, vol. 247, pp. 116–124.CrossRefGoogle Scholar
  42. 42.
    Kitani, A., Yano, J., and Sasaki, K., J. Electroanal. Chem. Interfacial Electrochem., 1986, vol. 209, pp. 227–232.CrossRefGoogle Scholar
  43. 43.
    Lofton, E.P., Thackeray, J.W., and Wrighton, M.S., J. Phys. Chem., 1986, vol. 90, pp. 6080–6083.CrossRefGoogle Scholar
  44. 44.
    Rashid, M., Sabir, S., Rahim, A.A., and Waware, U., J. Appl. Chem., 2014, vol. 2014, p. 973653.CrossRefGoogle Scholar
  45. 45.
    Yi, Y., Liu, G., Jin, Z., and Feng, D., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 3540–3550.Google Scholar
  46. 46.
    Jeyaprabha, C., Sathiyanarayanan, S., and Venkatachari, G., Appl. Surf. Sci., 2006, vol. 253, pp. 432–438.CrossRefGoogle Scholar
  47. 47.
    da Silva, J.E.P., de Torresi, S.I.C., and Torresi, R.M., Corros. Sci., 2005, vol. 47, pp. 811–822.CrossRefGoogle Scholar
  48. 48.
    Nateghi, M. and Borhani, M., React. Funct. Polym., 2008, vol. 68, pp. 153–160.CrossRefGoogle Scholar
  49. 49.
    Ayad, M., Salahuddin, N., Abou-Seif, A., and Alghaysh, M., Eur. Polym. J., 2008, vol. 44, pp. 426–435.CrossRefGoogle Scholar
  50. 50.
    Pasto, D. and Johnson, C., Organic Structure Determination, Englewood Cliffs, NJ: Prentice-Hall, 1969.Google Scholar
  51. 51.
    Williams, R., Srivastava, G., and McGovern, I., Rep. Prog. Phys., 1980, vol. 43, p. 1357.CrossRefGoogle Scholar
  52. 52.
    Trchová, M., Šeděnková, I., Konyushenko, E.N., Stejskal, J., Holler, P., and Ćirić-Marjanović, G., J. Phys. Chem. B, 2006, vol. 110, pp. 9461–9468.CrossRefGoogle Scholar
  53. 53.
    Ćirić-Marjanović, G., Blinova, N.V., Trchová, M., and Stejskal, J., J. Phys. Chem. B, 2007, vol. 111, pp. 2188–2199.CrossRefGoogle Scholar
  54. 54.
    Li, X.-G., Huang, M.-R., and Yang, Y., Polymer, 2001, vol. 42, pp. 4099–4107.CrossRefGoogle Scholar
  55. 55.
    Mav, I., Žigon, M., and Vohlídal, J., Wiley Online Library, 2004, pp. 307–314.Google Scholar
  56. 56.
    Solmaz, R., Corros. Sci., 2014, vol. 79, pp. 169–176.CrossRefGoogle Scholar
  57. 57.
    Solmaz, R., Corros. Sci., 2014, vol. 81, pp. 75–84.CrossRefGoogle Scholar
  58. 58.
    de Souza, F.S. and Spinelli, A., Corros. Sci., 2009, vol. 51, pp. 642–649.CrossRefGoogle Scholar
  59. 59.
    Markhali, B., Naderi, R., Mahdavian, M., Sayebani, M., and Arman, S., Corros. Sci., 2013, vol. 75, pp. 269–279.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Zeinab Shirazi
    • 1
  • Mohammad Hossein Keshavarz
    • 1
    Email author
  • Ahmad Nozad Golikand
    • 2
    • 3
  • Karim Esmaeilpour
    • 1
  1. 1.Department of Chemistry, Malek-ashtar University of TechnologyShahin-ShahrIran
  2. 2.Jaber Research Lab, NSTRITehranIran
  3. 3.Department of Chemistry, Shahre-e-Qods Branch, Islamic Azad UniversityTehranIran

Personalised recommendations