The Effect of Thermal Treatment Modes on the Structure and Corrosion Resistance of Plasma Coatings Made of Alloys Based on Nickel and Iron

  • Yu. A. PustovEmail author
  • V. I. KalitaEmail author
  • D. I. Komlev
  • A. A. Radyuk
  • A. Yu. Ivannikov


The structural state and corrosion resistance of the plasma coatings based on iron (FBKh6-2 alloy) and nickel (RW 12496 alloy from Castolin Co.) in aqueous solutions of sodium hydroxide and nitric acid upon varied thermal treatment modes have been investigated. Structural and electrochemical characteristics of these coatings have been compared to those of their analogs in the as-cast state that underwent respective thermal pretreatment. The morphological heterogeneity of the coatings’ surface has been demonstrated to determine the formation of their corrosion-electrochemical characteristics. The specific character of the corrosion process evolution responsible for significant degradation of the coatings’ corrosion resistance as compared to the cast alloys has been described. It has been established that the effect of morphological defects of the coatings’ surface (cavities, microcracks, roughness, open pores, etc.) on the corrosion process evolution can be substantially reduced and, in some cases, completely excluded through impregnation by the hydrophobizing fluid Anakrol-2501 with high penetrating ability. Corrosion tests of the coatings have been performed. It has been demonstrated that impregnation results in a significant reduction of the corrosion rate that becomes compatible to that of the annealed cast samples.


plasma coatings thermal treatment structural condition surface morphology electrochemical corrosion behavior corrosion resistance Anakrol-2501 hydrophobizing fluid coating impregnation 



Experiments on plasma sputtering were performed within the framework of state assignment no. 007-00129-18-00.


  1. 1.
    Kalita, V.I. and Komlev, D.I., Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi (Plasma Coatings with Nanocrystalline and Amorphous Structure), Moscow: Lider M, 2008.Google Scholar
  2. 2.
    Kuz'min, V.I., Vashchenko, S.P., Gulyaev, I.P., et al., Vestn. Yugorskogo Gos. Univ., 2015, vol. 37, no. 2, pp. 45–52.Google Scholar
  3. 3.
    Lyasnikov, V.N., Lyasnikova, A.V., and Dudareva, O.A., J. Therm. Spray Technol., 2016, vol. 25, no. 5, pp. 1040–1055.CrossRefGoogle Scholar
  4. 4.
    Milanti, A., Koivuluoto, H., Vuoristo, P., et al., Coatings, 2014, vol. 4, pp. 98–120. CrossRefGoogle Scholar
  5. 5.
    Milanti, A., Matikainen, V., Koivuluoto, H., et al., Surf. Coat. Technol., 2015, vol. 277, pp. 81–90.CrossRefGoogle Scholar
  6. 6.
    Ma, H.R., Li, J.W., Chang, C.T., et al., J. Therm. Spray Technol., 2017, vol. 26, no. 8, pp. 2040–2047. CrossRefGoogle Scholar
  7. 7.
    Zhang, S.D., Zhang, W.L., Wang, S.G., et al., Corros. Sci., 2015, vol. 93, pp. 211–221.CrossRefGoogle Scholar
  8. 8.
    Zheng, Z.B., Zheng, Y.G., Sun, W.H., and Wang, J.Q., Tribol. Int., 2015, vol. 90, pp. 393–403.CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Xing, Z.Z., Luo, Q., Rahman, A., et al., Corros. Sci., 2015, vol. 98, pp. 339–353.CrossRefGoogle Scholar
  10. 10.
    Haijun Zhang, Yongfeng Gong, Botao Zhang, et al., Proc. Int. Thermal Spray Conference and Exposition ITSC, Orlando, FL, 2018, p. 721.Google Scholar
  11. 11.
    Shujuan Dong, Bo Song, Hanlin Liao, and Coddet, S., Surf. Coat. Technol., 2015, vol. 268, pp. 36–45.CrossRefGoogle Scholar
  12. 12.
    Koga, G.Y., Junior, A.M.J., Roche, V., et al., Metall. Mater. Trans. A, 2018, vol. 49, pp. 4860–4870.CrossRefGoogle Scholar
  13. 13.
    Jiang-hao Qiao, Xin Jin, Jia-hao Qin, et al., Surf. Coat. Technol., 2018, vol. 334, pp. 286–291.CrossRefGoogle Scholar
  14. 14.
    Wenmin Guo, Jianfeng Zhang, Yuping Wu, et al., Mater. Des., 2015, vol. 78, pp. 118–124.CrossRefGoogle Scholar
  15. 15.
    Wang, L., Zhou, Z., Yao, H.H., et al., Proc. Int. Thermal Spray Conference and Exposition. ITSC, Chanhai, May 10–12, 2016, p. 194.Google Scholar
  16. 16.
    Liang-Yu Chen, Tianxiang Xu, Sheng Lu, et al., Surf. Coat. Technol., 2018, vol. 350, pp. 436–444.CrossRefGoogle Scholar
  17. 17.
    Qian, Z.H., Zhou, Z., Yao, H.H., et al., Proc. Int. Thermal Spray Conference and Exposition. ITSC, Chanhai, May 10–12, 2016, p. 707.Google Scholar
  18. 18.
    Komlev, D.I., Kalita, V.I., Men’shikov, G.A., et al., Fiz. Khim. Obrab. Mater., 2012, no. 6, pp. 40–50.Google Scholar
  19. 19.
    Pustov, Yu.A., Zolotarev, A.S., Gladkikh, N.A., et al., Fiz. Khim. Obrab. Mater., 2015, no. 3, pp. 35–43.Google Scholar
  20. 20.
    Ivannikov, A.Yu., Kalita, V.I., Komlev, D.I., et al., Surf. Coat. Technol., 2018, vol. 335, pp. 327–333.CrossRefGoogle Scholar
  21. 21.
    Pustov, Yu.A., Kalita, V.I., Tursunbaeva, A.A., et al., Perspekt. Mater., 2018, no. 7, pp. 57–66.Google Scholar
  22. 22.
    Wu, J., Zhang, S.D., Sun, W.H., and Wang, J.Q., Surf. Coat. Technol., 2018, vol. 335, pp. 205–218.CrossRefGoogle Scholar
  23. 23.
    Kurakova, N.V., Molokanov, V.V., Kalita, V.I., et al., Fiz. Khim. Obrab. Mater., 2008, no. 4, pp. 18–25.Google Scholar
  24. 24.
    Zhuk, N.P., Kurs teorii korrozii i zashchity metallov. Uchebnoe posobie dlya vuzov (Course of Theory on Corrosion and Protection of Metals. Student’s Book for Institutions of Higher Education), Moscow: Al’yans, 2006.Google Scholar
  25. 25.
    ANAKROL-2501_Impregnating_Compound. http:// Scholar
  26. 26.
    Samsonov, G.V., Serebryakov, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975.Google Scholar
  27. 27.
    Corrosion, Shraier, L.L., Ed., London: Newman Butterworths, 1976, vol. 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations