Regularities of Solvation of Halide Ions in Protic and Aprotic Media

  • R. N. KuklinEmail author
  • V. V. Emets


Regularities of interaction of halide anions with molecules of protic and aprotic solvent in the near coordination sphere and their effect on solvation in solutions are considered. While the solvation energy in an aprotic solvent is mainly represented by the electric component, the solvation energy in protic media also contains in addition to the electric component the chemical one related to the hydrogen bond. A microscopic model of interaction between the anion and proton solvent molecule is suggested that simulates the hydrogen atom dynamics in the field of the proton donor and acceptor and allows explaining the mechanism of formation of the chemical solvation energy component.


anion solvation protic and aprotic solvents electric and chemical solvation energy components 



This work was financially supported by the Russian Foundation for Basic Research, project no. 16-03-01078.


  1. 1.
    Reichardt, C., Solvents and Solvent Effect in Organic Chemistry, Weinheim: VCH, 1988.Google Scholar
  2. 2.
    Chuev, G.N. and Bazilevskii, M.V., Usp. Khim., 2003, vol. 72, p. 827.CrossRefGoogle Scholar
  3. 3.
    Problemy khimii rastvorov. Ionnaya sol’vatatsiya (Problems on Solution Chemistry. Ion Solvation), Krestov, G.A., Ed., Moscow: Nauka, 1987.Google Scholar
  4. 4.
    Vorotyntsev, M.A. and Kornyshev, A.A., Elektrostatika sred s prostranstvennoi dispersiei (Electrostatics of Media with Spatial Dispersion), Moscow: Nauka, 1993.Google Scholar
  5. 5.
    Rubashkin, A.A., Konev, D.V., and Vorotyntsev, M.A., Mezhdunar. Nauchno-Issled. Zh., 2016, no. 5 (47), part 5, p. 112.Google Scholar
  6. 6.
    Krishtalik, L.I., Russ. J. Electrochem., 2008, vol. 44, p. 43.CrossRefGoogle Scholar
  7. 7.
    Haibo, Yu., Mazzanti, C.L., Whitfield, T.W., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 10847.CrossRefGoogle Scholar
  8. 8.
    Kuklin, R.N., Ustoichivost’ adsorbtsionnykh faz. Razmernye kriterii nanoelektrokhimii (Stability of Adsorptive Phases. Dimensional Criteria for Nano-Electrochemistry), Moscow: GEOS, 2015.Google Scholar
  9. 9.
    Eyring, H.J., Lin, S.H., and Lin, S.M., Basic Chemical Kinetics (New York, Chichester, Brisbane, Toronto: Wiley, 1980.Google Scholar
  10. 10.
    Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Oxford Univ. Press, 1954.Google Scholar
  11. 11.
    Kuklin, R.N., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 4, p. 447.CrossRefGoogle Scholar
  12. 12.
    Miller, W.H., J. Phys. Chem., 1979, vol. 83, p. 960.CrossRefGoogle Scholar
  13. 13.
    Kratkii spravochnik fiziko-khimicheskikh velichin (Brief Handbook of Physicochemical Quantities), Ravdel’, A.A. and Mishchenko, K.P., Eds., Leningrad: Khimiya, 1974.Google Scholar
  14. 14.
    Tukachev, N.V., Bataev, V.A., and Godunov, I.A., Comput. Theor. Chem., 2017, vol. 1113, p. 82.CrossRefGoogle Scholar
  15. 15.
    Gordon, A.J. and Ford, R.A., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.Google Scholar
  16. 16.
    Tanida, H., Sacane, H., and Watanabe, I., J. Chem. Soc., Dalton Trans., 1994, p. 2321.Google Scholar
  17. 17.
    Tanida, H. and Watanabe, I., Bull. Chem. Soc. Jpn., 2000, vol. 73, p. 2747.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations