Advertisement

Template-Free Synthesis and Properties of Mesoporous Calcium Titanate

  • K. V. IvanovEmail author
  • O. V. Alekseeva
  • A. S. Kraev
  • A. V. Agafonov
NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS

Abstract

X-ray amorphous powder was obtained via template-free synthesis, including the sol–gel process and coprecipitation. We showed that mesoporous calcium titanate is formed during the calcination of a powder up to 800°C. The structure and morphology of the samples thermally processed at 200, 400, 600, and 800°C are studied with scanning electron microscopy, X-ray phase analysis, thermogravimetric analysis, and IR spectroscopy. Low-temperature adsorption–desorption of nitrogen vapors and laser diffraction analysis showed that calcium titanate powder has a highly developed surface of over 100 m2/g with average particle size from 99 to 290 nm and significant pore volume.

REFERENCES

  1. 1.
    Holliday, S. and Stanishevsky, A., Surf. Coat. Technol., 2004, vols. 188–189, pp. 741–744.CrossRefGoogle Scholar
  2. 2.
    Dubey, A.K., Tripathi, G., and Basu, B., J. Biomed. Mater. Res., Part B, 2010, vol. 95, no. 2, pp. 320–329.Google Scholar
  3. 3.
    Figueiredo, A.T., Longo, V.M., Lazaro, S., Mastelaro, V.R., Vicente, F.S., Hernandes, A.C., Li, M.S., Varela, J.A., and Longo, E., J. Lumin., 2007, vol. 126, pp. 403–407.CrossRefGoogle Scholar
  4. 4.
    Yahya, N.Y., Ngadi, N., Jusoh, M., and Halim, N.A.A., Energy Convers. Manage., 2016, vol. 129, pp. 275–283.CrossRefGoogle Scholar
  5. 5.
    Cesconeto, F.R., Borlaf, M., Nieto, M.I., Oliveira, A.P.N., and Moreno, R., Ceram. Int., 2017, vol. 44, no. 1, pp. 301–309.  https://doi.org/10.1016/j.ceramint.2017.09.173 CrossRefGoogle Scholar
  6. 6.
    Li, Z.J., Zhang, Y.J., Zhang, H.W., and Fu, H.X., Microporous Mesoporous Mater., 2013, vol. 176, pp. 48–54.CrossRefGoogle Scholar
  7. 7.
    Kay, H.F. and Bailey, P.C., Acta Crystallogr., 1957, vol. 10, pp. 219–226.CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Zhang, J., Ren, X., and Wang, X.J., J. Solid State Chem., 2008, vol. 181, pp. 393–398.CrossRefGoogle Scholar
  9. 9.
    Lee, S.J., Kim, Y.C., and Hwang, J.H., J. Ceram. Process. Res., 2004, vol. 5, pp. 223–226.Google Scholar
  10. 10.
    Kutty, T.R.N., Vivekanandan, R., and Murugaraj, P., J. Mater. Chem. Phys., 1988, vol. 19, pp. 533–546.CrossRefGoogle Scholar
  11. 11.
    Cavalcante, L.S., Marques, V.S., Sczancoski, J.C., Escote, M.T., Joya, M.R., Varela, J., et al., J. Chem. Eng., 2008, vol. 143, pp. 299–307.CrossRefGoogle Scholar
  12. 12.
    Moreira, M.L., Paris, E.C., Nascimento, G.S., Longo, V.M., Sambrano, J.R., Mastelaro, V.R., et al., Acta Mater., 2009, vol. 57, pp. 5174–5185.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. V. Ivanov
    • 1
    Email author
  • O. V. Alekseeva
    • 1
  • A. S. Kraev
    • 1
  • A. V. Agafonov
    • 1
  1. 1.Krestov Institute of Solution Chemistry, Russian Academy of SciencesIvanovoRussia

Personalised recommendations