Advertisement

Photoelectrocatalytic Oxidation of Formic Acid in the Visible Spectral Region on Films of Nanocrystalline Titanium Oxide Doped by Bismuth

  • V. A. GrinbergEmail author
  • V. V. Emets
  • N. A. Mayorova
  • D. A. Maslov
  • A. A. Averin
  • S. N. Polyakov
  • I. S. Levin
  • M. V. Tsodikov
NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • 3 Downloads

Abstract

A method of formation of film coatings of titanium dioxide doped by bismuth ions (Bi3+) is developed on the basis of sol–gel synthesis and used to form film coatings of titanium dioxide with the anatase structure on the photoanode surface. Thus, samples containing 0.5 to 20 wt % of Bi are obtained. It is shown that the doping of titanium dioxide by bismuth ions results in a shift of light absorption to the visible region of electromagnetic radiation spectrum. The absorption level depends on the concentration of bismuth and reaches its maximum for samples containing 0.5 and 1.0 wt % of Bi. It is suggested on the basis of the data of X-ray phase analysis that an increase in the content of bismuth to 20 wt % leads to destruction of crystalline regions and amorphization of bismuth oxide and titanium oxide. The obtained coatings are studied as catalysts of photoelectrocatalytic oxidation of formic acid under illumination by monochromatic and visible light. It is found that the highest catalytic effect is observed on samples containing 1.0 wt % of bismuth. The forbidden gap width is estimated on the basis of absorption of monochromatic (464 nm) light, and it is shown that photoelectrocatalytic oxidation of formic acid in the visible spectral range accompanied by formiate ion adsorption on the illuminated photoanode surface is probably due to a decrease in the forbidden gap width in doped titanium dioxide to 2.7 eV.

Keywords:

sol–gel method films of titanium dioxide doped by bismuth X-ray diffractometry photoelectrocatalysts photoelectrooxidation of organic compounds 

Notes

ACKNOWLEDGMENTS

Absorption spectra of nanosize films of titanium dioxide doped by bismuth were obtained using the equipment of Center for Collective Use of Physical Research Methods of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

FUNDING

The work was supported by the Program of Fundamental Research of Presidium of Russian Academy of Sciences 1.8P “Fundamental Aspects of Chemistry of Carbon Energetics” and the State task for the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, theme no. 47.23.

REFERENCES

  1. 1.
    Fujishima, A. and Honda, K., Nature, 1972, vol. 238, p. 37.CrossRefGoogle Scholar
  2. 2.
    Ni, M., Leung, M.K., and Leung, D.Y.C., Int. J. Hydrogen Energy, 2007, vol. 32, no. 13, p. 2305.CrossRefGoogle Scholar
  3. 3.
    Ma, Y., Wang, X., Jia, Y., et al., Chem. Rev., 2014, vol. 114, no. 19, p. 9987.CrossRefGoogle Scholar
  4. 4.
    Li, X., Yu, J., Low, J., et al., J. Mater. Chem. A, 2015, vol. 3, no. 6, p. 2485.CrossRefGoogle Scholar
  5. 5.
    Chen, X., Shen, S., Guo, L., et al., Chem. Rev., 2010, vol. 110, no. 11, p. 6503.CrossRefGoogle Scholar
  6. 6.
    Warren, E.L., McKone, J.R., Boettcher, S.W., et al., Chem. Rev., 2010, vol. 110, p. 6446.CrossRefGoogle Scholar
  7. 7.
    Kudo, A. and Miseki, Y., Chem. Soc. Rev., 2009, vol. 38, no. 1, p. 253.CrossRefGoogle Scholar
  8. 8.
    Maeda, K., J. Photochem. Photobiol., C, 2011, vol. 12, no. 4, p. 237.CrossRefGoogle Scholar
  9. 9.
    Han, F., Kambala, V.S., Srinivasan, M., et al., Appl. Catal., A, 2009, vol. 359, nos. 1–2, p. 25.Google Scholar
  10. 10.
    Antopoulou, M., Evgenidou, E., Lambropoulou, D., et al., Water Res., 2014, vol. 53, p. 215.CrossRefGoogle Scholar
  11. 11.
    Pelaez, M., Nolan, N.T., Pillai, S.C., et al., Appl. Catal., B, 2012, vol. 125, p. 331.CrossRefGoogle Scholar
  12. 12.
    Hoffmann, M.R., Martin, S.T., Choi, W., et al., Chem. Rev., 1995, vol. 95, p. 69.CrossRefGoogle Scholar
  13. 13.
    Akpan, U.G. and Hameed, B.H., J. Hazard. Mater., 2009, vol. 170, nos. 2–3, p. 520.CrossRefGoogle Scholar
  14. 14.
    Fujishima, A., Rao, T.N., and Tryk, D.A., J. Photochem. Photobiol., C, 2000, vol. 1, no. 1, p. 1.CrossRefGoogle Scholar
  15. 15.
    Chen, C., Ma, W., and Zhao, J., Chem. Soc. Rev., 2010, vol. 39, no. 11, p. 4206.CrossRefGoogle Scholar
  16. 16.
    Park, H., Park, Y., Kim, W., et al., J. Photochem. Photobiol., C, 2013, vol. 15, no. 1, p. 1.CrossRefGoogle Scholar
  17. 17.
    Shiraishi, Y. and Hirai, T., J. Photochem. Photobiol., C, 2008, vol. 9, no. 4, p. 157.CrossRefGoogle Scholar
  18. 18.
    Lincebigler, A.L., Lu, G., and Yates, J.T., Chem. Rev., 1995, vol. 95, no. 3, p. 735.CrossRefGoogle Scholar
  19. 19.
    Xu, Q., Yu, J., Zhang, J., et al., Chem. Commun., 2015, vol. 51, no. 37, p. 7950.CrossRefGoogle Scholar
  20. 20.
    Yu, J., Low, J., Xiao, W., et al., J. Am. Chem. Soc., 2014, vol. 136, no. 25, p. 8839.CrossRefGoogle Scholar
  21. 21.
    Li, X., Wen, J.Q., Low, J.X., et al., Sci. China Chem., 2014, vol. 57, p. 70.Google Scholar
  22. 22.
    Fu, J., Cao, S., Yu, J., et al., Dalton Trans., 2014, vol. 43, no. 24, p. 9158.CrossRefGoogle Scholar
  23. 23.
    Li, X., Liu, H.L., Luo, D.L., et al., Chem. Eng. J., 2012, vol. 180, p. 151.CrossRefGoogle Scholar
  24. 24.
    Dhakshinamoorthy, A., Navalon, S., Corma, A., et al., Energy Environ. Sci., 2012, vol. 5, no. 11, p. 9217.CrossRefGoogle Scholar
  25. 25.
    Zhang, Q.H., Han, W.D., Hong, Y.J., et al., Catal. Today, 2009, vol. 148, nos. 3–4, p. 335.CrossRefGoogle Scholar
  26. 26.
    Hemminger, J.C., Carr, R., and Somorjai, G.A., Chem. Phys. Lett., 1978, vol. 57, no. 1, p. 100.CrossRefGoogle Scholar
  27. 27.
    Inoue, T., Fujishima, A., Konish, S., and Honda, K., Nature, 1979, vol. 227, p. 637.CrossRefGoogle Scholar
  28. 28.
    Hirano, K. and Bard, A.J., J. Electrochem. Soc., 1980, vol. 127, no. 5, p. 1056.CrossRefGoogle Scholar
  29. 29.
    Reiche, H. and Bard, A.J., J. Am. Chem. Soc., 1979, vol. 101, no. 11, p. 3127.CrossRefGoogle Scholar
  30. 30.
    Kanno, T., Oguchi, T., Sakuragi, H., et al., Tetrahedron Lett., 1980, vol. 21, no. 5, p. 467.CrossRefGoogle Scholar
  31. 31.
    Taniguchi, I., Nakashima, K., Yamaguchi, H., and Yasukouchi, K., J. Electroanal. Chem., 1982, vol. 134, p. 191.CrossRefGoogle Scholar
  32. 32.
    Pleskov, Yu.V., Elektrokhimiya, 1981, vol. 17, p. 3.Google Scholar
  33. 33.
    Grinberg, V.A., Dzhavrishvili, T.V., Vasil’ev, Yu.B., et al., Elektrokhimiya, 1984, vol. 20, no. 1, p. 121.Google Scholar
  34. 34.
    Gurevich, Yu.Ya. and Pleskov, Yu.V., Itogi Nauki Tekh., Ser.: Elektrokhim., 1982, vol. 18, p. 3.Google Scholar
  35. 35.
    Mills, A. and Le Hunte, S., J. Photochem. Photobiol., A, 1997, vol. 108, no. 1, p. 1.CrossRefGoogle Scholar
  36. 36.
    Mills, A. and Lee, S.K., J. Photochem. Photobiol., A, 2002, vol. 152, nos. 1–3, p. 233.CrossRefGoogle Scholar
  37. 37.
    Anpo, M. and Takeuchi, M., J. Catal., 2003, vol. 216, p. 505.CrossRefGoogle Scholar
  38. 38.
    Antoniadou, M. and Lianos, P., J. Nanosci. Nanotechnol., 2010, vol. 10, no. 9, p. 6240.CrossRefGoogle Scholar
  39. 39.
    Li, L., Zhang, S., Li, G., and Zhao, H., Anal. Chem. Acta, 2012, vol. 754, p. 47.CrossRefGoogle Scholar
  40. 40.
    Grinberg, V.A., Emets, V.V., Modestov, A.D., et al., Russ. J. Electrochem., 2017, vol. 53, no. 2, p. 217.CrossRefGoogle Scholar
  41. 41.
    Wen, J., Li, X., Liu, W., et al., Chin. J. Catal., 2015, vol. 36, no. 12, p. 2049.CrossRefGoogle Scholar
  42. 42.
    Su, R., Bechstein, R., Kibsgaard, J., et al., J. Mater. Chem., 2012, vol. 22, no. 45, p. 23 755.CrossRefGoogle Scholar
  43. 43.
    Tu, Y.F., Huang, S.Y., Sang, J.P., et al., Mater. Res. Bull., 2010, vol. 45, no. 2, p. 224.CrossRefGoogle Scholar
  44. 44.
    Grinberg, V.A., Emets, V.V, Maiorova, N.A, et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p. 51.CrossRefGoogle Scholar
  45. 45.
    Baifu Xin, Liqiang Jing, Zhiyu Ren, et al., J. Phys. Chem. B, 2005, vol. 109, p. 2805.CrossRefGoogle Scholar
  46. 46.
    Sajjad, S., Leghari, S.A.K., Chen, F., et al., Chem. - Eur. J., 2010, vol. 16, no. 46, p. 13 795.CrossRefGoogle Scholar
  47. 47.
    Andronic, L., Enesca, A., Vladuta, C., and Duta, A., Chem. Eng. J., 2009, vol. 152, p. 64.CrossRefGoogle Scholar
  48. 48.
    Hajjaji, A., Atyaoui, A., Trabelsi, K., et al., Am. J. Anal. Chem., 2014, vol. 5, no. 8, p. 473.CrossRefGoogle Scholar
  49. 49.
    Hoang, S., Berglund, S.P., Hahn, N.T., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 3659.CrossRefGoogle Scholar
  50. 50.
    Hoang, S., Guo, S.W., Hahn, N.T., et al., Nano Lett., 2011, vol. 12, p. 26.CrossRefGoogle Scholar
  51. 51.
    Wang, G.M., Wang, H.Y., Ling, Y.C., et al., Nano Lett., 2011, vol. 11, p. 3026.CrossRefGoogle Scholar
  52. 52.
    Maksimov, Yu.V., Suzdalev, I.P., Tsodikov, M.V., et al., J. Mol. Catal. A: Chem., 1996, vol. 105, no. 3, p. 167.CrossRefGoogle Scholar
  53. 53.
    Kriventsov, V.V., Kochubey, D.I., Tsodikov, M.V., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vol. 407, nos. 1–2, p. 331.Google Scholar
  54. 54.
    Jiang, D., Zhao, H., Zhang, S., et al., J. Phys. Chem. B, 2003, vol. 107, no. 46, p. 12 774.CrossRefGoogle Scholar
  55. 55.
    Zhang, H., Zhao, H., Zhang, S., et al., ChemPhysChem, 2008, vol. 9, p. 117.CrossRefGoogle Scholar
  56. 56.
    Kim, D.H. and Anderson, M.A., J. Photochem. Photobiol., A, 1996, vol. 94, nos. 2–3, p. 221.CrossRefGoogle Scholar
  57. 57.
    Lana-Villarreal, T., Goґmez, R., Neumann-Spallart, M., et al., J. Phys. Chem. B, 2004, vol. 108, p. 15 172.CrossRefGoogle Scholar
  58. 58.
    Lana-Villarreal, T., Peґrez, J.M., and Goґmez, R., C. R. Chim., 2006, vol. 9, p. 806.CrossRefGoogle Scholar
  59. 59.
    Gong, X.-Q., Selloni, A., and Vittadini, A., J. Phys. Chem. B, 2006, vol. 110, p. 2804.CrossRefGoogle Scholar
  60. 60.
    Montoya, J.F., Peral, J., and Salvador, P., J. Phys. Chem. C, 2014, vol. 118, no. 26, p. 14 266.CrossRefGoogle Scholar
  61. 61.
    Montoya, J.F., Atitar, M.F., and Bahnemann, D.W., J. Phys. Chem. C, 2014, vol. 118, p. 14 276.CrossRefGoogle Scholar
  62. 62.
    Kim, D.H. and Anderson, M.A., Environ. Sci. Technol., 1994, vol. 28, no. 3, p. 479.CrossRefGoogle Scholar
  63. 63.
    Mitoraj, D., Beranek, R., and Kisch, H., Photochem. Photobiol. Sci., 2010, vol. 9, no. 1, p. 31.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Grinberg
    • 1
    Email author
  • V. V. Emets
    • 1
  • N. A. Mayorova
    • 1
  • D. A. Maslov
    • 2
  • A. A. Averin
    • 1
  • S. N. Polyakov
    • 2
    • 3
    • 4
  • I. S. Levin
    • 2
  • M. V. Tsodikov
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia
  4. 4.Technological Institute for Superhard Novel Carbon MaterialsTroitskRussia

Personalised recommendations