Advertisement

Computer Simulation of Water Vapor Adsorption on the Surface of a Crystal β-AgI Regular Shape Nanoparticle

  • S. V. ShevkunovEmail author
NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • 2 Downloads

Abstract

The Gibbs free energy and water vapor adsorption isotherms on the surface of a silver iodide nanoparticle at a temperature of 260 K have been calculated via the bicanonical statistic ensemble at the molecular level. The profiles of dependences reveal the capability of a surface to retain microdroplets in water vapors, as well as evidencing the condensation scenario of the formation of the contact between the dense phase and the solid surface as the most feasible way of heterogeneous nucleation under atmospheric conditions.

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Education of the Russian Federation (project no. 3.4808.2017/6.7) and by the Russian Foundation for Basic Research (project no. 18-03-00011).

REFERENCES

  1. 1.
    Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 170.CrossRefGoogle Scholar
  2. 2.
    Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 291.CrossRefGoogle Scholar
  3. 3.
    Simonov, V.N., Krasil’nikova, O.K., Khozina, E.V., and Zolotarevskii, V.I., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 363.CrossRefGoogle Scholar
  4. 4.
    Denisov, S.A., Sokolina, G.A., Grankina, T.Y., Krasil’nikova, O.K., Plotnikova, E.V., Spitsyn, B.V., and Bogatyreva, G.P., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 286.CrossRefGoogle Scholar
  5. 5.
    Tolmachev, A.M., Kryuchenkova, N.G., Anuchin, K.M., and Fomkin, A.A., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 150.CrossRefGoogle Scholar
  6. 6.
    Kittel, Ch., Thermal Physics, New York: John Wiley and Sons, 1969.Google Scholar
  7. 7.
    Tarasevich, Yu.G., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p. 607.CrossRefGoogle Scholar
  8. 8.
    Vigdorovich, V.I. and Tsygankova, L.E., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 501.CrossRefGoogle Scholar
  9. 9.
    Breed, D., Rasmussen, R., Weeks, C., Boe, B., and Deshler, T., J. Appl. Meteorol. Climatol., 2014, vol. 53, no. 2, p. 282.CrossRefGoogle Scholar
  10. 10.
    Bakhanova, R.A., Kiselev, V.I., Kuku, E.I., Kim, N.S., and Shkodkin, A.V., in Trudy Ukrainskogo regional’nogo nauchno-issledovatel’skogo gidrometeorologicheskogo instituta (Scientific Works of Ukrainian Regional Hydrometeorological Institute), Bakhanova, R.A. and Osokina, I.N., Eds., Moscow: Gidrometeoizdat, 1991, issue 242, p. 102.Google Scholar
  11. 11.
    Vlasyuk, M.P., Zmitrovich, V.Yu., Khvan, S.B., Seregin, Yu.A., Sidorov, A.I., and Serogodskii, A.V., Trudy Vsesoyuznoi konferentsii “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” Nal’chik, Oktyabr’ 22–25, 1991 (Proc. All-Union Conference “Active Impacts onto Hydrometeorological Processes”, Nalchik, October 22–25, 1991), St. Petersburg: Gidrometeoizdat, 1995, part 2, p. 231.Google Scholar
  12. 12.
    Timofeev, N.E., Madyakin, F.P., Arutyunyan, A.S., Salin, V.N., Plaude, N.O., and Kim, N.S., Trudy Vsesoyuznogo seminara “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” Nal’chik, Oktyabr’ 16–21, 1989 (Proc. All-Union Seminar “Active Impacts onto Hail Processes and Trends for Improving Ice-Forming Agents for Practice of Active Impacts”, Nalchik, October 16–21, 1989), Fedchenko, L.M., Ed., Moscow: Gidrometeoizdat, 1991, p. 224.Google Scholar
  13. 13.
    Timofeev, N.E., L’doobrazuyushchie pirotekhnicheskie sostavy i sredstva (Ice-Forming Pyrotechnic Compositions and Means), Kazan: Kazan State Technological Univ., 1995.Google Scholar
  14. 14.
    Turov, A.V., Arkharov, A.V., Kolomiets, N.A., Udamenko, V.V., and Oleksenko, L.P., Trudy Vsesoyuznogo seminara “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” Nal’chik, Oktyabr’ 16–21, 1989 (Proc. All-Union Seminar “Active Impacts onto Hail Processes and Trends for Improving Ice-Forming Agents for Practice of Active Impacts”, Nalchik, October 16–21, 1989), Fedchenko, L.M., Ed., Moscow: Gidrometeoizdat, 1991, p. 190.Google Scholar
  15. 15.
    Vlasov, S.A. and Dovgalyuk, Yu.A., Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1988, no. 517, p. 124.Google Scholar
  16. 16.
    Prikhot’ko, G.F., Iskusstvennye osadki iz konvektivnykh oblakov (Artificial Rainfalls from Convective Clouds), Leningrad: Gidrometeoizdat, 1968.Google Scholar
  17. 17.
    Arnett, D., Weather Modification by Cloud Seeding, New York: Academic Press, 1980.Google Scholar
  18. 18.
    Shevkunov, S.V., Dokl. Phys., 2011, vol. 56, no. 6, p. 323.CrossRefGoogle Scholar
  19. 19.
    Vonnegut, B. and Baldwin, M., J. Clim. Appl. Meteorol., 1984, vol. 23, no. 3, p. 486.CrossRefGoogle Scholar
  20. 20.
    DeMott, P., J. Atmos. Res., 1995, vol. 38, nos. 1–4, p. 63.CrossRefGoogle Scholar
  21. 21.
    Zobrist, B., Koop, T., Marcolli, C., and Peter, T., J. Phys. Chem. A, 2008, vol. 112, no. 17, p. 3965.CrossRefGoogle Scholar
  22. 22.
    Fraux, G. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, no. 21, p. 216101.CrossRefGoogle Scholar
  23. 23.
    Zielke, S.A., Bertram, A.K., and Patey, G.N., J. Phys. Chem. B, 2015, vol. 119, no. 29, p. 9049.CrossRefGoogle Scholar
  24. 24.
    Moreno, L.A.L., Stetzer, O., and Lohmann, U., Atmos. Chem. Phys., 2013, vol. 13, no. 19, p. 9745.CrossRefGoogle Scholar
  25. 25.
    Vali, G., DeMott, P.J., Möhler, O., and Whale, T.F., Atmos. Chem. Phys., 2015, vol. 15, no. 18, p. 10263.CrossRefGoogle Scholar
  26. 26.
    Djikaev, Y.S. and Ruckenstein, E.J., J. Phys. Chem. A, 2008, vol. 112, no. 46, p. 11677.CrossRefGoogle Scholar
  27. 27.
    Cox, S.J., Kathmann, Sh.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184704.CrossRefGoogle Scholar
  28. 28.
    Tolmachev, A.M., Fomenkov, P.E., Kryuchenkova, N.G., Firsov, D.A., and Anuchin, K.M., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, p. 215.CrossRefGoogle Scholar
  29. 29.
    Kudryashov, S.Y., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 57.CrossRefGoogle Scholar
  30. 30.
    Shevkunov, S.V., Kolloidn. Zh., 1983, vol. 45, no. 5, p. 1019.Google Scholar
  31. 31.
    Shevkunov, S.V., Martsinovski, A.A., and Vorontsov-Velyaminov, P.N., Mol. Simul., 1990, vol. 5, nos. 3–4, p. 119.CrossRefGoogle Scholar
  32. 32.
    Shevkunov, S.V., J. Exp. Theor. Phys., 2001, vol. 92, p. 420.CrossRefGoogle Scholar
  33. 33.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., J. Mol. Struct.: THEOCHEM, 2003, vol. 623, nos. 1–3, p. 221.CrossRefGoogle Scholar
  34. 34.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Fluid Phase Equilib., 2005, vol. 233, no. 1, p. 34.CrossRefGoogle Scholar
  35. 35.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, nos. 2–3, p. 188.CrossRefGoogle Scholar
  36. 36.
    Shevkunov, S.V. Colloid J., 2016, vol. 78, p. 137.CrossRefGoogle Scholar
  37. 37.
    Spravochnik khimika (Handbook for Chemist), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1971, p. 404.Google Scholar
  38. 38.
    Wang, Ch., Lu, H., Wang, Zh., Xiu, P., Zhou, B., Zuo, G., Wan, R., Hu, J., and Fang, H., Phys. Rev. Lett., 2009, vol. 103, p. 137801.CrossRefGoogle Scholar
  39. 39.
    Hale, B.N. and Kiefer, J., J. Chem. Phys., 1980, vol. 73, no. 2, p. 923.CrossRefGoogle Scholar
  40. 40.
    Shevkunov, S.V., Colloid J., 2005, vol. 67, no. 4, p. 497.CrossRefGoogle Scholar
  41. 41.
    Shevkunov, S.V., J. Exp. Theor. Phys., 2008, vol. 107, p. 965.CrossRefGoogle Scholar
  42. 42.
    Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 608.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations