Advertisement

Oxidation of Powdered Aluminum after Surface Modification with Mn, Fe, Co, and Ni Formates

  • V. G. ShevchenkoEmail author
  • V. N. Krasil’nikov
  • D. A. Yeselevich
  • A. V. Konyukova
PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • 7 Downloads

Abstract

The effect of small additives of manganese, iron, cobalt, and nickel oxides on the oxidation of aluminum powder of ASD-4 grade while heating in air is studied. Composites of Al/MOx were prepared by impregnating the metal powder with saturated solutions of M(HCOO)2 ⋅ 2H2O (M = Mn, Fe, Co, and Ni) formates and thermal treatment of the mixtures in air with a maximum annealing temperature of 375°C. It has been established that the effect of modifiers on the intensity of oxidation depends on the nature of the interfacial interaction on the surface of particles. The formation of a liquid phase in the interaction of aluminum oxides and iron leads to the loss of the protective properties by the barrier layer of oxidation products and acceleration of the process.

Keywords:

aluminum powder surface modification formate oxidation 

Notes

ACKNOWLEDGMENTS

This work was performed in accordance with a state order and R&D plans of the Institute of Solid State Chemistry of the Russian Academy of Sciences, Ural Branch, subject AAA-A16-116122810219-4.

This work was partially supported by the Russian Foundation for Basic Research, project no. 16-32-00061 mol_a.

REFERENCES

  1. 1.
    Kwon, Y.S., Gromov, A.A., and Ilyin, A.P., et al., Combust. Flame, 2003, vol. 133, pp. 385–391.CrossRefGoogle Scholar
  2. 2.
    DesJardin, P.E., Felske, J.D., and Carrara, M.D., J. Propul. Power, 2005, vol. 21, pp. 478–485.CrossRefGoogle Scholar
  3. 3.
    Yagodnikov, D.A., Vosplamenenie i gorenie poroshkoobraznykh metallov (Inflammation and Combustion of Powder-Like Metals), Moscow: Bauman Moscow State Technical Univ., 2009.Google Scholar
  4. 4.
    Zang, F. and Keith, G., J. Propul. Power, 2009, vol. 25, pp. 845–858.CrossRefGoogle Scholar
  5. 5.
    Gan, Y. and Qiao, L., Combust. Flame, 2011, vol. 158, pp. 354–368.CrossRefGoogle Scholar
  6. 6.
    Woo, K.D., Kim, J.H., Kwon, E.P., et al., Met. Mater. Int., 2010, vol. 16, pp. 218–313.CrossRefGoogle Scholar
  7. 7.
    Yeh, C.L. and Wang, H.J., J. Alloys Compd., 2010, vol. 491, pp. 153–158.CrossRefGoogle Scholar
  8. 8.
    Martirosyan, K.S., J. Mater. Chem., 2011, vol. 21, pp. 9400–9405.CrossRefGoogle Scholar
  9. 9.
    Stamatis, D., Zhu, X., Schoenitz, M., et al., Powder Technol., 2011, vol. 208, pp. 181–186.CrossRefGoogle Scholar
  10. 10.
    Kumar, S. and Krishnamurthy, N., Process. Appl. Ceram., 2011, vol. 5, pp. 181–186.CrossRefGoogle Scholar
  11. 11.
    Zhang, K., Fen, W., Zhu, J., and Wu, H., Sci. Sintering, 2012, vol. 44, pp. 73–80.CrossRefGoogle Scholar
  12. 12.
    Poda, A.R., Moser, R.D., Cuddy, M.F., et al., J. Nanomater. Mol. Nanotechnol., 2013, vol. 2, p. 100105.CrossRefGoogle Scholar
  13. 13.
    Shevchenko, V.G., Volkov, V.L., Kononenko, V.I., et al., Fiz. Goreniya Vzryva, 1996, vol. 32, pp. 91–94.Google Scholar
  14. 14.
    Shevchenko, V.G., Eselevich, D.A., Konyukova, A.V., and Krasil’nikov, V.N., RF Patent 2509790.Google Scholar
  15. 15.
    Shevchenko, V.G., Eselevich, D.A., Konyukova, A.V., and Krasil’nikov, V.N., Russ. J. Phys. Chem., B, 2014, vol. 8, no. 5, pp. 634–640.Google Scholar
  16. 16.
    Shevchenko, V.G., Krasil’nikov, V.N., Eselevich, D.A., et al., Combust., Explos., Shock Waves, 2015, vol. 51, pp. 572–577.CrossRefGoogle Scholar
  17. 17.
    Shevchenko, V.G., Krasil’nikov, V.N., Eselevich, D.A., and Konyukova, A.V., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, pp. 835–840.CrossRefGoogle Scholar
  18. 18.
    Pivkina, A., Streletskii, A., Kolbanev, I., et al., J. Mater. Sci., 2004, vol. 39, pp. 5451–5453.CrossRefGoogle Scholar
  19. 19.
    Fedorov, S.G., Guseinov, Sh.L., and Storozhenko, P.A., Nanotechnol. Russ., 2010, vol. 5, nos. 9–10, pp. 565–582.CrossRefGoogle Scholar
  20. 20.
    Li, Q., Lin, B., Li, W., et al., Powder Technol., 2011, vol. 212, pp. 303–309.CrossRefGoogle Scholar
  21. 21.
    Badiola, C., Gill, R.J., and Dreizin, E.L., Combust. Flame, 2011, vol. 158, pp. 2064–2070.CrossRefGoogle Scholar
  22. 22.
    Seo, H.S., Kim, J.K., Kim, J.W., et al., J. Ind. Eng. Chem., 2014, vol. 20, pp. 189–193.CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Song, I., Jiang, W., et al., Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 263–270.CrossRefGoogle Scholar
  24. 24.
    Buzdov, K.A. and Antonov, B.D., Russ. J. Inorg. Chem., 2012, vol. 57, pp. 1599–1605.CrossRefGoogle Scholar
  25. 25.
    Stepanov, R.S., Kruglakova, N.A., Asbsekhov, A.M., and Pekhotin, K.V., Fiz. Goreniya Vzryva, 2004, vol. 40, no. 5, pp. 80–90.Google Scholar
  26. 26.
    Korotkikh, A.G., Arkhimov, V.A., Glotov, O.G., et al., Gorenie Vzryv, 2015, vol. 8, no. 2, pp. 129–137.Google Scholar
  27. 27.
    Gopienko, V.G., Osipov, B.R., Nazarov, B.P., et al., Proizvodstvo i primenenie alyuminievykh poroshkov i pudr (Production and Application of Aluminum Powders and Dusts), Moscow: Metallurgiya, 1980.Google Scholar
  28. 28.
    Fox, P.G., Ehretsmann, J., and Brown, C.E., J. Catal., 1971, vol. 20, pp. 67–73.CrossRefGoogle Scholar
  29. 29.
    Muraishi, K., Takano, T., Nagase, K., and Tanaka, N., J. Inorg. Nucl. Chem., 1981, vol. 43, pp. 2293–2297.CrossRefGoogle Scholar
  30. 30.
    Vecher, A.A., Davidovich, S.V., and Gusev, E.A., Thermochim. Acta, 1985, vol. 89, pp. 383–386.CrossRefGoogle Scholar
  31. 31.
    Morando, P.J., Piacquadio, N.H., and Blesa, M.A., Thermochim. Acta, 1987, vol. 117, pp. 325–330.CrossRefGoogle Scholar
  32. 32.
    Qusti, A.H., Samarkandy, A.A., Al-Thabaiti, S., et al., J. King Abdulaziz Univ., Sci., 1997, vol. 9, pp. 73–81.CrossRefGoogle Scholar
  33. 33.
    Leyva, A.G., Polla, G., and Vega, D., J. Solid State Chem., 2001, vol. 157, pp. 23–29.CrossRefGoogle Scholar
  34. 34.
    Ergaliev, R.T., Korzanov, V.S., Krasnovskikh, M.P., and Lushchikov, A.A., Vestn. Permsk. Univ., Ser.: Khim., 2017, vol. 7, pp. 152–158.Google Scholar
  35. 35.
    Pierce, R.D. and Friedberg, S.A., Phys. Rev. B, 1971, vol. 3, pp. 934–942.CrossRefGoogle Scholar
  36. 36.
    Osaki, K., Nakai, Y., and Watanabe, T., J. Phys. Soc. Jpn., 1964, vol. 19, pp. 717–723.CrossRefGoogle Scholar
  37. 37.
    Thomas, J.M., Williams, J.O., and Clarke, T.A., J. Chem. Soc. A, 1970, pp. 2938–2939.Google Scholar
  38. 38.
    Takeda, K. and Kawasaki, K., J. Phys. Soc. Jpn., 1971, vol. 31, pp. 1026–1036.CrossRefGoogle Scholar
  39. 39.
    Kaufman, A., Afshar, C., Rossi, M., Zacharias, D.E., and Glusker, J.P., Struct. Chem., 1993, vol. 4, pp. 191–198.CrossRefGoogle Scholar
  40. 40.
    Vassileva, V., Cryst. Res. Technol., 1996, vol. 31, pp. 993–1000.CrossRefGoogle Scholar
  41. 41.
    Masuda, Y. and Hatakeyama, M., Thermochim. Acta, 1998, vol. 308, pp. 165–170.CrossRefGoogle Scholar
  42. 42.
    Shannon, R.D., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., cas Theor. Gen. Crystallogr., 1976, vol. 32, pp. 751–767.Google Scholar
  43. 43.
    Rahman, M.M., Mukhedkar, V.A., Venkataraman, A., et al., Thermochim. Acta, 1988, vol. 125, pp. 173–190.CrossRefGoogle Scholar
  44. 44.
    Music, S., Gotic, M., Popovic, S., and Czako-Nagy, I., Mater. Lett., 1994, vol. 20, pp. 143–148.CrossRefGoogle Scholar
  45. 45.
    Martirosyan, K.S., J. Mater. Chem., 2011, vol. 21, pp. 9400–9405.CrossRefGoogle Scholar
  46. 46.
    Asif Khan, R.M. and Malik, A.Q., NUST J. Eng. Sci., 2012, vol. 5, pp. 1–6.Google Scholar
  47. 47.
    Wen, J.Z., Ringuette, S., Bohlouli-Zanjani, G., et al., Nanoscale Res. Lett., 2013, vol. 8, no. 1, p. 184.CrossRefGoogle Scholar
  48. 48.
    Patel, V.K., Saurav, J.R., Gangopadhyay, K., et al., RSC Adv., 2015, vol. 5, pp. 21471–21479.CrossRefGoogle Scholar
  49. 49.
    Monogarov, K.A., Pivkina, A.N., Grishin, L.I., et al., Acta Astronaut., 2017, vol. 135, pp. 69–75.CrossRefGoogle Scholar
  50. 50.
    Duraes, L., Costa, D.F.O., Santos, R., et al., Mater. Sci. Eng., A, 2007, vol. 465, pp. 199–210.CrossRefGoogle Scholar
  51. 51.
    Liu, Y., Qian, Q., Xu, C., et al., Asian J. Chem., 2013, vol. 25, pp. 5550–5552.CrossRefGoogle Scholar
  52. 52.
    Wang, Y., Song, X.I., Jiang, W., et al., Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 263–270.CrossRefGoogle Scholar
  53. 53.
    Woo, K.D., Kim, J.H., Kwon, E.P., et al., Met. Mater. Int., 2010, vol. 16, pp. 213–218.CrossRefGoogle Scholar
  54. 54.
    Morey, G.W., Phase-Equilibrium Relations of the Common Rock-Forming Oxides Except Water, chap. 50 of Data of Geochemistry, Fleischer, M., Ed., Washington, DC: U.S. Government Printing Office, 1964.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. G. Shevchenko
    • 1
    Email author
  • V. N. Krasil’nikov
    • 1
  • D. A. Yeselevich
    • 1
  • A. V. Konyukova
    • 1
  1. 1.Institute of Solid State Chemistry, Russian Academy of Sciences, Ural BranchYekaterinburgRussia

Personalised recommendations