Advertisement

Pitting Corrosion of Carbon Steel in Chloride-Containing Saturated Ca(OH)2 Solutions

  • V. S. Shaldaev
  • A. N. Malofeeva
  • A. D. DavydovEmail author
PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • 2 Downloads

Abstract

Pitting formation in carbon steel in saturated Ca(OH)2 solutions containing different concentrations of added NaCl is studied experimentally using cyclic voltammetry and choronoamperometry. The dependences of corrosion, pitting, and repassivation potentials on the NaCl concentrations are established. The possibility of pitting corrosion of carbon steel in such solutions is evaluated. We discuss the limitations of the used electrochemical methods to long-term forecasting of pitting corrosion of metals.

Keywords:

carbon steel pitting corrosion cyclic voltammetry chronoamperometry 

Notes

REFERENCES

  1. 1.
    Sharifi-Asl, S., Mao, F., Lu, P., Kursten, B., and Macdonald, D.D., Corros. Sci., 2015, vol. 98, p. 708.CrossRefGoogle Scholar
  2. 2.
    Kursten, B. and Druyts, F., J. Nucl. Mater., 2008, vol. 379, p. 91.CrossRefGoogle Scholar
  3. 3.
    Sánchez, M., Gregori, J., Alonso, M.C., García-Jareño, J.J., and Vicent, F., Electrochim. Acta, 2006, vol. 52, p. 47.CrossRefGoogle Scholar
  4. 4.
    Valcarce, M.B. and Vázquez, M., Electrochim. Acta, 2008, vol. 53, p. 5007.CrossRefGoogle Scholar
  5. 5.
    Macdonald, D.D., J. Electrochem. Soc., 1992, vol. 139, p. 3434.CrossRefGoogle Scholar
  6. 6.
    Oranowska, H. and Szklarska-Smialowska, Z., Corros. Sci., 1981, vol. 21, p. 735.CrossRefGoogle Scholar
  7. 7.
    Gouda, V.K., Br. Corros. J., 1970, vol. 5, p. 198.CrossRefGoogle Scholar
  8. 8.
    Viefhaus, H. and Janik-Czachor, M., Werkst. Korros., 1977, vol. 28, p. 219.CrossRefGoogle Scholar
  9. 9.
    Electrochemical Techniques in Corrosion Science and Engineering, Kelly, R.G., Scully, J.R., Shoesmith, D.W., and Buchheit, R.G., Eds., New York: Marcel Dekker, 2003, Chap. 3.Google Scholar
  10. 10.
    McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010, Chap. 10.CrossRefGoogle Scholar
  11. 11.
    Pourbaix, M., Klimzack-Mathieu, L., Mertens, C., VanLeugenhaghe, C., De Munck, L., Laureys, J., Neelemans, L., Meunier, J., and Warzee, M., Corros. Sci., 1963, vol. 3, p. 239.CrossRefGoogle Scholar
  12. 12.
    Dayal, R.K., Parvathavarthini, N., and Gnanamoorthy, J.B., Corrosion, 1980, vol. 36, p. 433.CrossRefGoogle Scholar
  13. 13.
    Schwenk, W., Corrosion, 1964, vol. 20, p. 129.CrossRefGoogle Scholar
  14. 14.
    Davydov, A.D., Shaldaev, V.S., and Engel’gardt, G.R., Russ. J. Electrochem., 2006, vol. 42, no. 2, p. 121.CrossRefGoogle Scholar
  15. 15.
    Davydov, A.D., Shaldaev, V.S., and Malofeeva, A.N., Korroz.: Mater., Zashch., 2004, no. 6, p. 2.Google Scholar
  16. 16.
    Sridhar, N. and Cragnolino, G.A., Corrosion, 1993, vol. 49, p. 885.CrossRefGoogle Scholar
  17. 17.
    Lei, K.-S., Macdonald, D.D., Pound, B.G., and Wilde, B.E., J. Electrochem. Soc., 1988, vol. 135, p. 1625.CrossRefGoogle Scholar
  18. 18.
    Sussek, G. and Kesten, M., Corros. Sci., 1975, vol. 15, p. 225.CrossRefGoogle Scholar
  19. 19.
    Shibata, T. and Takeyama, T., Corrosion, 1977, vol. 33, p. 243.CrossRefGoogle Scholar
  20. 20.
    Sato, N., Corros. Sci., 1995, vol. 37, p. 1947.CrossRefGoogle Scholar
  21. 21.
    Syrett, B.C., Viswanathan, R., Wing, S.S., and Wittig, J.E., Corrosion, 1982, vol. 38, p. 273.CrossRefGoogle Scholar
  22. 22.
    Thompson, N.G. and Syrett, B.C., Corrosion, 1992, vol. 48, p. 649.CrossRefGoogle Scholar
  23. 23.
    Freiman, L.I., Flis, Ya., Prazhak, M., Garts, I., Narovska, B., Bartonichek, R., Kristal’, M.M., Baru, R.L., Mandzhagaladze, S.N., Glazkova, S.A., Tlamsa, Ya., Reformatskaya, I.I., Starosvetskii, D.I., Basman, A.R., Markova, T.P., Danilov, I.S., Bukanova, G.S., Karasyuk, T.N., Oranskaya, R.N., Tsikaridze, T.S., and Bandalova, M.M., Zashch. Met., 1986, vol. 22, p. 179.Google Scholar
  24. 24.
    Tarantseva, K.R. and Pakhomov, V.S., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 3, p. 359.CrossRefGoogle Scholar
  25. 25.
    Zamaletdinov, I.I. and Baryshnikov, I.N., Korroz.: Mater., Zashch., 2016, no. 5, p. 7.Google Scholar
  26. 26.
    Kachanov, V.A., Gvozdikova, E.K., Balak, T.A., Smirnov, A.A., and Nesterenko, S.V., Korroz.: Mater., Zashch., 2012, no. 6, p. 9.Google Scholar
  27. 27.
    Silverman, D.C., Practical Corrosion Prediction Using Electrochemical Techniques, in Uhlig’s Corrosion Handbook, Revie, R.W., Ed., New York: Wiley, 2000, p. 1179.Google Scholar
  28. 28.
    Frankel, G.S. and Sridhar, N., Mater. Today, 2008, vol. 11, no. 10, p. 38.CrossRefGoogle Scholar
  29. 29.
    Davydov, A.D., Russ. J. Electrochem., 2008, vol. 44, no. 7, p. 835.CrossRefGoogle Scholar
  30. 30.
    Frankel, G.S., Stockert, L., Hunkeler, F., and Boehni, H., Corrosion, 1987, vol. 43, p. 429.CrossRefGoogle Scholar
  31. 31.
    Sato, N., J. Electrochem. Soc., 1982, vol. 129, p. 255.CrossRefGoogle Scholar
  32. 32.
    Lizlovs, E.A. and Bond, A.P., Corrosion, 1975, vol. 31, p. 219.CrossRefGoogle Scholar
  33. 33.
    Štefec, R., Werkst. Korros., 1982, vol. 33, p. 143.CrossRefGoogle Scholar
  34. 34.
    Mor, E.D., Scotto, V., and Mollica, A., Werkst. Korros., 1980, vol. 31, p. 282.CrossRefGoogle Scholar
  35. 35.
    Wilde, B.E., Proc. Int. Conference on Localized Corrosion, Williamsburg, VA, 1971, Houston, TX: National Association of Corrosion Engineers, 1974, p. 342.Google Scholar
  36. 36.
    Rybalka, K.V., Shaldaev, V.S., Beketaeva, L.A., Malofeeva, A.N., and Davydov, A.D., Russ. J. Electrochem., 2010, vol. 46, no. 2, p. 196.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. S. Shaldaev
    • 1
  • A. N. Malofeeva
    • 1
  • A. D. Davydov
    • 1
    Email author
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations