The Effect of Alternating Current on the Rate of Dissolution of Carbon Steel in a Chloride Electrolyte. Part II. Cathode Potentials

  • A. I. Marshakov
  • T. A. NenashevaEmail author
  • E. V. Kasatkin
  • I. V. Kasatkina


Under the action of alternating current, the steel dissolution rate increases significantly in a 3.5% NaCl solution at the potentials of cathodic protection of structures. A characteristic “potential–current” dependence corresponding to metal passivation at cathode potentials is obtained. The conditions for forming local corrosion defects under the action of alternating current are determined. It is shown that the dependence of the cathode current on the peak value of the potential differs significantly from those predicted based on the effect of Faraday rectification of the alternating current. The main difference is the appearance of a maximum or an inflection on the “current–peak potential” curves, which can be explained by metal passivation.


carbon steel corrosion corrosion rate alternating current 



This work was supported by the Russian Foundation for Basic Research, project no. 14-03-00421.


  1. 1.
    Marshakov, A.I. and Nenasheva, T.A., Korroz.: Mater., Zashch., 2016, no. 4, pp. 1–11.Google Scholar
  2. 2.
    GOST (State Standard) no. 9.602–2005: Unified System of Corrosion and Ageing Protection. Underground Constructions. General Requirements for Corrosion Protection, Moscow: Standartinform, 2006.Google Scholar
  3. 3.
    Brenna, A., Ormellese, M., and Lazzari, L., Proc. Corrosion 2013 NACE International, Orlando, FL, 2013, paper no. 2457.Google Scholar
  4. 4.
    Ibrahim, I., Tribollet, B., Takenouti, H., and Meyer, M., J. Braz. Chem. Soc., 2015, vol. 26, no. 1, pp. 196–208.Google Scholar
  5. 5.
    Nielsen, L.V., Proc. CORROSION/2005, Houston, TX: NACE Int., 2005, paper no. 05188.Google Scholar
  6. 6.
    CEN/TS 15280, Evaluation of A. C. Corrosion Likelihood of Buried Pipelines–Application to Cathodically Protected Pipelines, Technical Specification, 2006.Google Scholar
  7. 7.
    Wang, L.W., Wang, X.H., Cui, Z.Y., Liu, Z.Y., Dub, C.W., and Li, X.G., Corros. Sci., 2014, vol. 86, pp. 213–222.CrossRefGoogle Scholar
  8. 8.
    Lalvani, S.B. and Lin, X.A., Corros. Sci., 1994, vol. 36, no. 6, pp. 1039–1046.CrossRefGoogle Scholar
  9. 9.
    Lalvani, S.B. and Lin, X.A., Corros. Sci., 1996, vol. 38, no. 10, pp. 1709–1719.CrossRefGoogle Scholar
  10. 10.
    Carpentiers, P., Gregoor, R., and Pourbaix, A., Proc. EUROCORR-2003, Budapest, 2003, paper no. 307.Google Scholar
  11. 11.
    Brenna, A., PhD Thesis, Milano: Politecnico di Milano, 2009–2011, p. 158.Google Scholar
  12. 12.
    Marshakov, A.I., Rybkina, A.A., and Chebotareva, N.P., Prot. Met., 1997, vol. 33, no. 6, pp. 531–537.Google Scholar
  13. 13.
    Kablunovskii, V.S., Gorodynskii, A.V., Belinskii, V.N., and Glushchak, T.S., Kontsentratsionnye izmeneniya v prielektrodnykh sloyakh v protsesse elektroliza (Concentration Variations in Near-Electrode Layers During Electrolysis), Kiev: Naukova Dumka, 1978.Google Scholar
  14. 14.
    Tran, T.T.M., Tribollet, B., and Sutter, E.M.M., Electrochim. Acta, 2016, vol. 216, pp. 58–67.CrossRefGoogle Scholar
  15. 15.
    Marshakov, A.I., Batishcheva, O.V., and Mikhailovskii, Yu.N., Zashch. Met., 1989, vol. 25, no. 6, p. 888.Google Scholar
  16. 16.
    Marshakov, A.I., Ignatenko, V.E., and Mikhailovskii, Yu.N., Zashch. Met., 1994, vol. 30, no. 3, pp. 238–242.Google Scholar
  17. 17.
    Spravochnik po elektrokhimii (Handbook on Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.Google Scholar
  18. 18.
    Marichev, V.A., Electrochim. Acta, 2008, vol. 53, no. 27, pp. 7952–7960.CrossRefGoogle Scholar
  19. 19.
    Alonso, M., Andrade, C., and Castellote, C., Electrochim. Acta, 2002, vol. 47, no. 21, pp. 3469–3481.CrossRefGoogle Scholar
  20. 20.
    Valcarce, M.B. and Vázquez, M., Electrochim. Acta, 2008, vol. 53, pp. 5007–5015.CrossRefGoogle Scholar
  21. 21.
    Zakroczymski, T., Chwei-Jer Fan, and Szklarska-Smialowska, Z., J. Electrochem. Soc., 1985, vol. 132, no. 12, pp. 2868–2871.CrossRefGoogle Scholar
  22. 22.
    Dražić, D.M. and Chen Shen Hao, Electrochim. Acta, 1982, vol. 27, no. 10, pp. 1409–1415.CrossRefGoogle Scholar
  23. 23.
    Freiman, L.I. and Kuznetsova, E.G., Prot. Met., 2001, vol. 37, no. 5, pp. 484–490.CrossRefGoogle Scholar
  24. 24.
    Marshakov, A.I., Rybkina, A.A., Maleeva, M.A., and Rybkin, A.A., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 3, pp. 345–351.CrossRefGoogle Scholar
  25. 25.
    Rybkina, A.A., Maleeva, M.A., and Marshakov, A.I., Korroz.: Mater., Zashch., 2014, vol. 12, pp. 1–6.Google Scholar
  26. 26.
    Marshakov, A.I., Rybkina, A.A., Maksaeva, L.B., Petrunin, M.A., and Nazarov, A.P., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, pp. 936–946.CrossRefGoogle Scholar
  27. 27.
    Marshakov, A.I. and Nenasheva, T.A., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 7, pp. 1122–1132.CrossRefGoogle Scholar
  28. 28.
    Marshakov, A.I. and Nenasheva, T.A., Korroz.: Mater., Zashch., 2014, vol. 4, pp. 14–24.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Marshakov
    • 1
  • T. A. Nenasheva
    • 1
    Email author
  • E. V. Kasatkin
    • 1
  • I. V. Kasatkina
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia

Personalised recommendations