Advertisement

Determining the Boundaries of the Concentration Area of Action of the Rehbinder Effect for an S-shaped Adsorption Isotherm

  • E. M. Podgaetsky
Physicochemical Processes at the Interfaces
  • 8 Downloads

Abstract

This paper continues a study of the magnitude of thermodynamic estimation of the Rehbinder effect as a function of volume concentration in a liquid solution of a surface-active substance (surfactant) in the case of an S-shaped adsorption isotherm on an undeformed and uncharged surface. A generally piecewise linear approximation of the isotherm is used. The conditions of existence of a bounded concentration action area of the Rehbinder effect, such that the area does not fall outside the bounds of defining data from the adsorption isotherm, are derived analytically in terms of theory parameters. The width of this area is compared to the data in the literature on the Rehbinder effect for quartz and granite obtained during dodecyltrimethylammonium bromide adsorption.

Keywords

adsorption solid surface Rehbinder effect concentration selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rebinder, P.A., Shreiner, L.A., and Zhigach, K.F., Poniziteli tverdosti v burenii (Hardness Reducers for Drilling), Moscow: USSR Acad. Sci., 1944.Google Scholar
  2. 2.
    Gray, G.R. and Darley, H.C.H., Composition and Properties of Drilling and Completion Fluids, Houston, TX: Gulf Publ., 1988.Google Scholar
  3. 3.
    Podgaetskii, E.M., Russ. J. Electrochem., 1999, vol. 35, no. 4, p.482.Google Scholar
  4. 4.
    Podgaetskii, E.M., Russ. J. Electrochem., 2005, vol. 41, no. 1, p.17.CrossRefGoogle Scholar
  5. 5.
    Podgaetskii, E.M., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2010, vol. 4, no. 4, p.614.CrossRefGoogle Scholar
  6. 6.
    Podgaetskii, E.M., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 3, p.247.CrossRefGoogle Scholar
  7. 7.
    Podgaetskii, E.M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 4, p.433.CrossRefGoogle Scholar
  8. 8.
    Podgaetskii, E.M., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, p.183.CrossRefGoogle Scholar
  9. 9.
    Podgaetskii, E.M., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 3, p.393.CrossRefGoogle Scholar
  10. 10.
    Giles, C.H., MacEwan, T.H., Nachawa, S.N., and Smith, D., J. Chem. Soc., 1960, p. 3973Google Scholar
  11. 10a.
    Giles, C.H., Smith, D., and Huitson, A., J. Colloid Interface Sci., 1974, vol. 47, p.755.CrossRefGoogle Scholar
  12. 11.
    Bouzerda, M., PhD Thesis, Montpelier, VA: CNRS Lab. 30, 1991.Google Scholar
  13. 12.
    Frumkin, A.N., Tr. Khim. Inst. im. L. Ya. Karpova, 1925, no. 56, p. 56Google Scholar
  14. 13a.
    Frumkin, A.N., Z. Phys., 1926, vol. 35, p.792.CrossRefGoogle Scholar
  15. 13.
    Podgaetskii, E.M., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 6, p. 970.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Applied Mechanics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations