Advertisement

Regularities of Vacuum Oxidation of Iron in the Range of Low-Temperature Passivation According to the Data of Spectral Ellipsometry

  • V. A. Kotenev
Investigation Methods for Physicochemical Systems
  • 1 Downloads

Abstract

The methods of spectral ellipsometry and nanotomography are used to study the kinetics of formation of oxide layer phase components (magnetite and hematite) on the iron surface under the conditions of vacuum treatment, in the region of low-temperature gas passivation manifestation. In the course of oxidation at the temperature of 300°C and vacuum treatment at 1 Torr, an island and, then, a solid layer of magnetite grows on the surface of iron. Further oxidation results in growth of α-Fe2O3 in the form of plates at the magnetite–gas boundary depthward into magnetite. It forms an island film consisting of hematite microcrystallites on the surface of magnetite when this magnetite surface is coated. Island coalescence occurs under longterm oxidation exposure, which leads to formation of a solid layer consisting of hematite microcrystallites with thin intergrain boundaries. Here, a “puzzle” surface structure is observed, in which crystallite boundaries approximately correspond to their neighbors and, therefore, result in complete coating of the surface. Such a layer efficiently hinders oxygen diffusion, which passivates the metal and prevents formation of a thick magnetite layer.

Keywords

metal oxidation inhomogeneous films passivation spectral ellipsometry spectrotomography microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thin Films: Interdiffusion and Reactions, Poate, J.M., Tu, K.N., and Mayer, J.W., Eds., New York: Wiley-Interscience, 1978.Google Scholar
  2. 2.
    Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: Kom-Kniga, 2006.Google Scholar
  3. 3.
    Surface Modification and Alloying by Laser, Ion, and Electron Beams, Poate, J.M., Foti, G., and Jacobson, D.C., Eds., New York: Plenum Press, 1983.Google Scholar
  4. 4.
    Roberts, M.W. and McKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon Press, 1978.Google Scholar
  5. 5.
    Khimushin, F.F., Nerzhaveyushchie stali (Stainless Steels), Moscow: Metallurgiya, 1967.Google Scholar
  6. 6.
    Fehlner, F.P., Low-Temperature Oxidation: The Role of Vitreous Oxides, New York, Princeton, NJ: John Wiley and Sons, 1986.Google Scholar
  7. 7.
    L’Oxydation des Metaux, Bénard, J., Ed., Paris: Gauthier-Villars, 1962, vol.2.Google Scholar
  8. 8.
    Kotenev, V.A. and Tsivadze, A.Yu., Prot. Met., 2007, vol. 43, no. 5, pp. 445–453.CrossRefGoogle Scholar
  9. 9.
    Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., and Tsivadze, A.Yu., Prot. Met., 2005, vol. 41, no. 6, pp. 507–520.CrossRefGoogle Scholar
  10. 10.
    Boggs, W.E., Kachik, R.H., and Pellizier, G.E., J. Electrochem. Soc., 1965, vol. 112, no. 6, pp. 539–546.CrossRefGoogle Scholar
  11. 11.
    Boggs, W.E., Kachik, R.H., and Pellizier, G.E., J. Electrochem. Soc., 1967, vol. 114, no. 1, p.32.CrossRefGoogle Scholar
  12. 12.
    Kotenev, V.A., Prot. Met., 2003, vol. 39, no. 3, pp. 260–268.CrossRefGoogle Scholar
  13. 13.
    Kotenev, V.A., Prot. Met., 2003, vol. 39, no. 4, pp. 301–310.CrossRefGoogle Scholar
  14. 14.
    Wagner, K., Corros.Sci., 1965, vol. 5, no. 11, p.751.CrossRefGoogle Scholar
  15. 15.
    Domke, M. and Kuvelos, B., Corros. Sci., 1983, vol. 23, no. 8, p.921.CrossRefGoogle Scholar
  16. 16.
    Szklarska-Smialowska, Z. and Krishnakumar, R., in Electrochemical and Optical Techniques for the Study and Monitoring of Metallic Corrosion, Ferreira, M.G.S. and Melendres, C.A., Eds., Kluwer Academic Publ., 1991, p.285.Google Scholar
  17. 17.
    Kotenev, V.A., Maksaeva, L.B., and Petrunin, M.A., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, pp. 751–756.CrossRefGoogle Scholar
  18. 18.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, pp. 964–971.CrossRefGoogle Scholar
  19. 19.
    Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, pp. 597–603.CrossRefGoogle Scholar
  20. 20.
    Kotenev, V.A., Proc. SPIE, 1992, vol. 1843, p.259.CrossRefGoogle Scholar
  21. 21.
    Kaiser, J.H., Appl. Phys. B: Photophys. Laser Chem., 1988, vol. 45, p.1.CrossRefGoogle Scholar
  22. 22.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Incorrect Problems), Moscow: Nauka, 1986.Google Scholar
  23. 23.
    Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light, Amsterdam: North-Holland, 1977.Google Scholar
  24. 24.
    Verlan’, A.F. and Sizikov, V.S., Integral’nye uravneniya (Integral Equations), Kiev: Naukova Dumka, 1986.Google Scholar
  25. 25.
    Tanaka, T., Jpn. J. Appl. Phys., 1979, vol. 18, no. 6, pp. 1043–1047.CrossRefGoogle Scholar
  26. 26.
    Gardiner, D.J., Littleton, C.J., Thomas, K.M., and Stratford, K.N., Oxid. Met., 1987, vol. 27, p.57.CrossRefGoogle Scholar
  27. 27.
    Tjong, S.C., Mater. Res. Bull., 1983, vol. 18, p.157.CrossRefGoogle Scholar
  28. 28.
    Hart, T.R., Adams, S.B., and Tempkin, H., Proc. 3rd Int. Conference on Light Scattering in Solids, Balkanski, M., Leite, R.C.C., and Porto, S.P.S., Eds. (Flammarion, Paris, 1976), p.254.Google Scholar
  29. 29.
    Thibeau, R.J., Brown, C.W., and Heidersbach, R.H., Appl. Spectrosc., 1978, vol. 32, p.532.CrossRefGoogle Scholar
  30. 30.
    Gardiner, D.J., Littleton, C.J., Thomas, K.M., and Stratford, K.N., Oxid. Met., 1987, vol. 27, nos. 1–2, p.57.CrossRefGoogle Scholar
  31. 31.
    Kotenev, V.A. and Tsivadze, A.Yu., Meas. Tech., 2012, vol. 54, no. 12, pp. 1421–1426.CrossRefGoogle Scholar
  32. 32.
    Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 4, pp. 479–484.CrossRefGoogle Scholar
  33. 33.
    Kotenev, V.A., Kiselev, M.R., Vysotskii, V.V., Averin, A.A., and Tsivadze, A.Y., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, pp. 825–831.CrossRefGoogle Scholar
  34. 34.
    Kotenev, V.A., Vysotskii, V.V., Averin, A.A., and Tsivadze, A.Y., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 3, pp. 454–461.CrossRefGoogle Scholar
  35. 35.
    Oxide Thin Films, Multilayers, and Nanocomposites, Mele, P., Eds., Springer, 2015.Google Scholar
  36. 36.
    Destro, F.B., Cilense, M., Nascimento, M.P., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 104–110.CrossRefGoogle Scholar
  37. 37.
    Nanofabrication, Stepanova, M. and Dew, S., Eds., Springer, Wien, 2012.Google Scholar
  38. 38.
    Mohammadnejad, M., Habibolahzadeh, A., and Yousefpour, M., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 100–103.CrossRefGoogle Scholar
  39. 39.
    Hsu, J.-Y., Kuo, S.-K., and Wu, K.-Y., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 2, pp. 272–278.CrossRefGoogle Scholar
  40. 40.
    Shaik, S., Bagale, U., Ashokkumar, M., and Sonawane, S., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, pp. 850–858.CrossRefGoogle Scholar
  41. 41.
    Yuan, L., Jiang, Q., Wang, J., and Zhou, G., J. Mater. Res., 2012, vol. 27, no. 7, p. 1014.CrossRefGoogle Scholar
  42. 42.
    Yuan, L., Wang, Y.Q., Mema, R., and Zhou, G.W., Acta Mater., 2011, vol. 59, p. 2491.CrossRefGoogle Scholar
  43. 43.
    Mema, R., Yuan, L., Du, Q., Wang, Y.Q., and Zhou, G.W., Chem. Phys. Lett., 2011, vol. 512, p.87.CrossRefGoogle Scholar
  44. 44.
    Herring, C., J. Appl. Phys., 1950, vol. 21, p.437.CrossRefGoogle Scholar
  45. 45.
    Korhonen, M.A., Borgesen, P., Tu, K.N., and Li, C.-Y., J. Appl. Phys., 1993, vol. 73, p. 3790.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations