Advertisement

Synergistic Effect of Purpald with Tartaric Acid on the Corrosion Inhibition of Mild Steel: from Electrochemical to Theoretical Insights

  • Lei Guo
  • Min Wu
  • Senlin Leng
  • Yujie Qiang
  • Xingwen Zheng
Physicochemical Problems of Materials Protection
  • 16 Downloads

Abstract

The mutually corroborated electrochemical measurements and theoretical calculations were used to investigate the corrosion inhibition performances of purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, AHMT) and its synergistic effect with tartaric acid (TA) on mild steel in 0.5 M H2SO4 solution. The experimental results show that the inhibition efficiency increases with the concentration of AHMT and increases further when TA exists. Density functional theory (DFT) calculations were performed to interpret the measured data and trends observed in the electrochemical studies. Furthermore, molecular dynamic simulation revealed a nearly flat configuration for molecules on metal surface with negative adsorption energies in a sequence agreed with experimental observation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, X.G., Zhang, D.W., Liu, Z.Y., et al., Nature, 2015, vol. 527, p.441.CrossRefGoogle Scholar
  2. 2.
    Dwivedi, D., Lepková, K., and Becker, T., RSC Adv., 2017, vol. 7, p. 4580.CrossRefGoogle Scholar
  3. 3.
    Rani, B.E.A. and Basu, B.B.J., Int. J. Corros., 2012, vol. 2012, p.1.CrossRefGoogle Scholar
  4. 4.
    Kovacevic, N. and Kokalj, A., Mater. Chem. Phys., 2012, vol. 137, p.331.CrossRefGoogle Scholar
  5. 5.
    Kokalj, A., Faraday Discuss., 2015, vol. 180, p.415.CrossRefGoogle Scholar
  6. 6.
    Gece, G., Corros. Sci., 2011, vol. 53, p. 3873.CrossRefGoogle Scholar
  7. 7.
    Mo, S., Luo, H.Q., and Li, N.B., Chem. Pap., 2016, vol. 70, p. 1131.CrossRefGoogle Scholar
  8. 8.
    Wang, Z., Gong, Y., Jing, C., et al., Corros. Sci., 2016, vol. 113, p.64.CrossRefGoogle Scholar
  9. 9.
    Shama, G., Corros. Sci., 2012, vol. 60, p.1.CrossRefGoogle Scholar
  10. 10.
    Mobin, M. and Rizvi, M., Carbohydr. Polym., 2017, vol. 156, p.202.CrossRefGoogle Scholar
  11. 11.
    Azaroual, M.A., El Harrak, E.F., Touir, R., et al., J. Mol. Liq., 2016, vol. 220, p.549.CrossRefGoogle Scholar
  12. 12.
    Tang, L.B., Li, X.M., Mu, G.N., et al., Appl. Surf. Sci., 2006, vol. 252, p. 6394.CrossRefGoogle Scholar
  13. 13.
    Guo, L., Ye, G., Obot, I.B., et al., Int. J. Electrochem. Sci., 2017, vol. 12, p.166.CrossRefGoogle Scholar
  14. 14.
    Umoren, S.A. and Solomon, M.M., J. Ind. Eng. Chem., 2015, vol. 21, p.81.CrossRefGoogle Scholar
  15. 15.
    Qiang, Y., Guo, L., Zhang, S., et al., Sci. Rep., 2016, vol. 6, p. 33305.CrossRefGoogle Scholar
  16. 16.
    Zarrouk, A., Hammouti, B., Dafali, A., and Bentiss, F., Ind. Eng. Chem. Res., 2013, vol. 52, p. 2560.CrossRefGoogle Scholar
  17. 17.
    Delley, B., J. Chem. Phys., 2000, vol. 113, p. 7756.CrossRefGoogle Scholar
  18. 18.
    Becke, A.D., J. Chem. Phys., 1988, vol. 88, p. 2547.CrossRefGoogle Scholar
  19. 19.
    Sun, H., Jin, Z., Yang, C., et al., J. Mol. Model., 2016, vol. 22, p.47.CrossRefGoogle Scholar
  20. 20.
    Guo, L., Obot, I.B., Zheng, X., et al., Appl. Surf. Sci., 2017, vol. 406, p.301.CrossRefGoogle Scholar
  21. 21.
    Andersen, H.C., J. Chem. Phys., 1980, vol. 72, p. 2384.CrossRefGoogle Scholar
  22. 22.
    Abdel-Rehim, S.S., Khaled, K.F., and Abd-Elshafi, N.S., Electrochim. Acta, 2006, vol. 51, p. 3269.CrossRefGoogle Scholar
  23. 23.
    Jafari, H., Danaee, I., Eskandari, H., and RashvandAvei, M., Ind. Eng. Chem. Res., 2013, vol. 52, p. 6617.CrossRefGoogle Scholar
  24. 24.
    Ali, S.A., Saeed, M.T., and Rahman, S.U., Corros. Sci., 2003, vol. 45, p.253.CrossRefGoogle Scholar
  25. 25.
    Khaled, K.F., Mater. Chem. Phys., 2008, vol. 112, p.290.CrossRefGoogle Scholar
  26. 26.
    Eddy, N.O., Ibok, U.J., Ameh, P.O., et al., Chem. Eng. Commun., 2014, vol. 201, p. 1360.CrossRefGoogle Scholar
  27. 27.
    Song, P., Guo, X.Y., Pan, Y.C., et al., Electrochim. Acta, 2013, vol. 89, p.503.CrossRefGoogle Scholar
  28. 28.
    Medvedev, M.G., Bushmarinov, I.S., Sun, J.W., et al., Science, 2017, vol. 355, p.49.CrossRefGoogle Scholar
  29. 29.
    Hammes-Schiffer, S., Science, 2017, vol. 355, p.28.CrossRefGoogle Scholar
  30. 30.
    Liu, S.B., Acta Phys. -Chim. Sin., 2009, vol. 25, p.590.Google Scholar
  31. 31.
    Koopmans, T., Phys. A, 1934, vol. 1, p.104.Google Scholar
  32. 32.
    Kokalj, A., Electrochim. Acta, 2010, vol. 56, p.745.CrossRefGoogle Scholar
  33. 33.
    Zhang, J., Qiao, G.M., Hu, S.Q., et al., Corros. Sci., 2011, vol. 53, p.147.CrossRefGoogle Scholar
  34. 34.
    Khalil, N., Electrochim. Acta, 2003, vol. 48, p. 2635.CrossRefGoogle Scholar
  35. 35.
    Gao, G. and Liang, C.H., Electrochim. Acta, 2007, vol. 52, p. 4554.CrossRefGoogle Scholar
  36. 36.
    Stoyanova, A., Petkova, G., and Peyerimhoff, S.D., Chem. Phys., 2002, vol. 279, p.1.CrossRefGoogle Scholar
  37. 37.
    Yadav, M., Behera, D., and Kumar, S., Can. Metall. Q., 2014, vol. 53, p.220.CrossRefGoogle Scholar
  38. 38.
    Lukovits, I., Kalman, E., and Zucchi, F., Corrosion, 2001, vol. 57, p.3.CrossRefGoogle Scholar
  39. 39.
    Doner, A., Solmaz, R., Ozcan, M., and Kardas, G., Corros. Sci., 2011, vol. 53, p. 2902.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Lei Guo
    • 1
  • Min Wu
    • 1
  • Senlin Leng
    • 1
  • Yujie Qiang
    • 2
  • Xingwen Zheng
    • 2
  1. 1.School of Material and Chemical EngineeringTongren UniversityTongrenChina
  2. 2.Material Corrosion and Protection Key Laboratory of Sichuan provinceZigongChina

Personalised recommendations