Advertisement

The Formation of Vanadium-Containing Coatings in a Stagewise Microarc Oxidation Process

  • Zh. I. Bespalova
  • I. N. Panenko
New Substances, Materials and Coatings
  • 16 Downloads

Abstract

Formation of vanadium-containing oxide ceramic coatings in the stagewise microarc oxidation process on the surface of the D16 aluminum alloy is studied. Conclusions as to the mechanism of their growth are made on the basis of analysis of the change in the element composition and surface morphology of the coatings. The prospects of using such coatings as catalytically active systems are shown.

Keywords

microarc oxidation oxide ceramic coatings vanadium oxide compounds element composition surface morphology electrolyte sodium metavanadate thermochemical and plasmachemical reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Venugopal, A., Panda, R., Manwatkar, S., et al., Trans. Nonferrous Met. Soc. China, 2012, vol. 22, p.700.CrossRefGoogle Scholar
  2. 2.
    Pogrebnyak, A.D., Koverina, A.Sh., and Kylyshkanov, M.K., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 1, p.72.CrossRefGoogle Scholar
  3. 3.
    Rudnev, V.S., Prot. Met., 2008, vol. 44, no. 3. p.263.CrossRefGoogle Scholar
  4. 4.
    Cang, X.S., Xin, S.L., Cen, Z.R., et al., Surf. Coat. Technol., 2005, vol. 199, p.184.CrossRefGoogle Scholar
  5. 5.
    Demirci, E.E., Arslan, E., Ezirmik, K.V., et al., Thin Solid Films, 2013, vol. 528, p.116.CrossRefGoogle Scholar
  6. 6.
    Tang, M., Li, W., Liu, H., et al., Surf. Coat. Technol., 2011, vol. 205, p. 4135.CrossRefGoogle Scholar
  7. 7.
    Vasil'eva, M.S., Rudnev, V.S., Kondrikov, N.B., et al., Russ. J. Appl. Chem., 2004, vol. 77, no. 2, p.218.CrossRefGoogle Scholar
  8. 8.
    Matykina, E., Arrabl, R., Mohamed, A., et al., Corros. Sci., 2009, vol. 51, p. 2897.CrossRefGoogle Scholar
  9. 9.
    Yang, X., Li, M., Lin, X., et al., Surf. Coat. Technol., 2013, vol. 233, p.65.CrossRefGoogle Scholar
  10. 10.
    Rudnev, V.S., Vaganov-Vil’kins, A.A., Nedozorov, P.M., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 1, p.87.CrossRefGoogle Scholar
  11. 11.
    Harvey, T.G., Corros. Eng., Sci. Technol., 2013, vol. 48, p.248.CrossRefGoogle Scholar
  12. 12.
    Nedozorov, P.M., Klin, K.N., Yarovaya, T.P., et al., Zh. Prikl. Spektrosk., 2001, vol. 68, no. 4, p.512.Google Scholar
  13. 13.
    Rudnev, V.S., Kondrikov, N.B., Tyrina, L.M., et al., Membrany, Ser. Krit. Tekhnol., 2005, no. 63, p.63.Google Scholar
  14. 14.
    Chernykh, I.V., Lukiyanchuk, I.V., Rudnev, V.S., et al., Russ. J. Appl. Chem., 2013, vol. 86, no. 3, p.319.CrossRefGoogle Scholar
  15. 15.
    Bayati, M.R., Zargar, H.R., Molaei, R., et al., Appl. Surf. Sci., 2010, vol. 256, p. 3806.CrossRefGoogle Scholar
  16. 16.
    Itkis, D.M., Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2010.Google Scholar
  17. 17.
    Gordienko, P.S. and Rudnev, V.S., Zashch. Met., 1990, vol. 26, no. 3, p.467.Google Scholar
  18. 18.
    Rudnev, V.S. and Gordienko, P.S., Zashch. Met., 1993, vol. 29, no. 2, p.304.Google Scholar
  19. 19.
    Malyshev, V.N. and Zorin, K.M., Appl. Surf. Sci., 2007, vol. 254, p. 1511.CrossRefGoogle Scholar
  20. 20.
    Borisov, A.M., Krit, B.L., Lyudin, V.B., et al., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 1, p.50.CrossRefGoogle Scholar
  21. 21.
    Panenko, I.N., Cand. Sci. (Eng.) Dissertation, Novocherkassk: M.I. Platov South-Russian State Polytechnic Univ., 2017.Google Scholar
  22. 22.
    Mamaev, A.I., RF Patent 2152255, Byull. Izobret., 2000, no.10.Google Scholar
  23. 23.
    Reed, S.J.B., Electron Microprobe Analysis, Cambridge: Cambridge Univ. Press, 1975.Google Scholar
  24. 24.
    Suminov, I.V., Epel’fel’d, A.V., Lyudin, V.B., et al., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma and Electrolytic Modification for Metal and Alloy Surfaces), Moscow: EKOMET, 2005, p.234.Google Scholar
  25. 25.
    Yang, X.J., Tian, P.F., Wang, H.L., et al., J. Catal., 2016, vol. 336, p.126.CrossRefGoogle Scholar
  26. 26.
    Rakoch, A.G., Mogurova, Yu.V., Bardin, I.V., et al., Korroz.: Mater., Zashch., 2007, no. 36, p.36.Google Scholar
  27. 27.
    Monfort, F., Berkani, A., Matykina, E., et al., Corros. Sci., 2007, vol. 49, p.672.CrossRefGoogle Scholar
  28. 28.
    Snizhko, L.O., Yerokhin, A.L., Pilkington, A., et al., Electrochim. Acta, 2004, vol. 49, p. 2085.CrossRefGoogle Scholar
  29. 29.
    Xue, W., Deng, Z., Chen, R., et al., Thin Solid Films, 2000, vol. 372, p.114.CrossRefGoogle Scholar
  30. 30.
    Chang, L., J. Alloys Compd., 2009, vol. 468, p.462.CrossRefGoogle Scholar
  31. 31.
    Hussein, R.O., Nie, X., and Northwood, D.O., Corros. Mater., 2013, vol. 38, no. 1, p.55.Google Scholar
  32. 32.
    Prytz, Ø., Flage-Larsen, E., Gu, L., et al., Phys. Rev. B, 2012, vol. 85, p. 195112.CrossRefGoogle Scholar
  33. 33.
    Cai, Y., Huang, Z.F., Ming, X., et al., J. Alloys Compd., 2010, vol. 505, p. L23.CrossRefGoogle Scholar
  34. 34.
    Kim, Y.H. and Lee, H.I., Bull. Korean Chem. Soc., 1999, vol. 20, no. 12, p. 1457.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Platov South Russian State Polytechnic UniversityNovocherkassk, Rostov oblastRussia

Personalised recommendations