Advertisement

The Effect of Vinyl-Siloxane Nanolayers on the Corrosion Behavior of Zinc

  • M. A. Petrunin
  • L. B. Maksaeva
  • N. A. Gladkikh
  • E. N. Narkevich
  • T. A. Yurasova
  • A. A. Rybkin
  • E. V. Terekhova
  • V. A. Kotenev
  • E. N. Kablov
  • A. Yu. Tsivadze
Nanoscale and Nanostructured Materials and Coatings
  • 14 Downloads

Abstract

The effect of surface siloxane nanolayers on the electrochemical and corrosion behavior of zinc is studied. It is found that surface self-organizing siloxane nanolayers inhibit anodic dissolution of zinc and its corrosion in chloride-containing electrolytes and under atmospheric conditions and can also cause a decrease in the pitting rate on the metal surface. It is established that the inhibiting effect of the vinyl-siloxane nanolayer depends on its thickness. Thus, the surface siloxane monolayer is insufficient for suppressing corrosion processes. Siloxane layers with a thickness above two or three molecular layers most efficiently inhibit corrosion and local dissolution of zinc. At this thickness, the most ordered surface structures are apparently formed. The FTIR method is used to show that the formed surface self-organizing vinyl-siloxane nanolayers on zinc are stable under exposure to sodium chloride solution and preserve strong bonds with the metal surface despite the occurring corrosion processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corrosion, Shraier, L.L., Ed., London: Newnes-Butterworth, 1976.Google Scholar
  2. 2.
    Mikhailovskii, Yu.N., Atmosfernaya korroziya metallov i metody ikh zashchity (Atmospheric Corrosion of Metals and Methods for their Protecting), Moscow: Metallurgiya, 1989.Google Scholar
  3. 3.
    Plueddemann, E.P., Silane Coupling Agents, New York: Plenum Press, 1982.CrossRefGoogle Scholar
  4. 4.
    Cieslik, M., Kotarba, A., Engvall, K., and Pan, J., Corros. Sci., 2011, vol. 53, p.296.CrossRefGoogle Scholar
  5. 5.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 6, p.656.CrossRefGoogle Scholar
  6. 6.
    Yuna, T.H., Parka, J.H., Kimb, J.S., and Parka, J.M., Prog. Org. Coat., 2014, vol. 77, p. 1780.CrossRefGoogle Scholar
  7. 7.
    Corso, C., Dickherber, A., and Hunt, W., Biosens. Bioelectron., 2008, vol. 24, p.805.CrossRefGoogle Scholar
  8. 8.
    Berger, F., Delhalle, J., and Mekhalif, Z., Appl. Surf. Sci., 2010, vol. 256, p. 7131.CrossRefGoogle Scholar
  9. 9.
    Pluddemann, E., Silane Coupling Agents, New York: Springer Science and Business Media, 1991.CrossRefGoogle Scholar
  10. 10.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Gladkikh, N.A., Terekhova, E.V., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, pp. 964–971.CrossRefGoogle Scholar
  11. 11.
    Sinapi, F., Issakova, T., Delhalle, J., and Mekhalif, Z., Thin Solid Films, 2007, vol. 515, p. 6833.CrossRefGoogle Scholar
  12. 12.
    Aramaki, K., Corros. Sci., 2002, vol. 44, p. 1621.CrossRefGoogle Scholar
  13. 13.
    Kornherr, A., French, S.A., Sokol, A.A., et al., Chem. Phys. Lett., 2004, vol. 393, p.107.CrossRefGoogle Scholar
  14. 14.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Maleeva, M.A., Shcherbina, A.A., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, p.784.CrossRefGoogle Scholar
  15. 15.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Maleeva, M.A., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, p. 1010.CrossRefGoogle Scholar
  16. 16.
    Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Kotenev, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 6, p.655.CrossRefGoogle Scholar
  17. 17.
    GOST (State Standard) no. 3640-94: Zinc. Specifications, Moscow: Standartinform, 2011.Google Scholar
  18. 18.
    Heppel, M. and Cateforis, E., Electrochim. Acta, 2001, vol. 46, p. 3801.CrossRefGoogle Scholar
  19. 19.
    Kotenev, V.A., Petrunin, M.A., Maksaeva, L.B., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2005, vol. 41, no. 6, p.507.Google Scholar
  20. 20.
    Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., et al., Rev. Sci. Instrum., 2007, vol. 78, p. 013705.CrossRefGoogle Scholar
  21. 21.
    Ignatenko, V.E., Marshakov, A.I., Rybkina, A.A., et al., Korroz.: Mater., Zashch., 2005, no. 12, p.12.Google Scholar
  22. 22.
    Chaneac, C., Tronc, E., and Jolivet, J.P., J. Mater. Chem., 1996, vol. 6, no. 12, p. 1905.CrossRefGoogle Scholar
  23. 23.
    Ishida, N. and Mittal, K.L., Adhesion Aspects of Polymeric Coatings, New York: Plenum Press, 1983.Google Scholar
  24. 24.
    Alkan, M., et al., Microporous Mesoporous Mater., 2005, vol. 84, p.75.CrossRefGoogle Scholar
  25. 25.
    Wen Ke, Maoz Rivka, Cohen Hagai, et al., ACS Nano, 2008, vol. 2, no. 3, p.579.CrossRefGoogle Scholar
  26. 26.
    Franquet, A., Terryn, H., and Vereecken, J., Thin Solid Films, 2003, vol. 441, p.76.CrossRefGoogle Scholar
  27. 27.
    Mehrdad Davoodi and Mojtaba Nasr-Esfahani, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, p.149.CrossRefGoogle Scholar
  28. 28.
    More, Aarti P. and Mhaske, S.T., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, p.864.CrossRefGoogle Scholar
  29. 29.
    Mohsen Mohammadnejad and Ali Habibolahzadeh, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, p. 100.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Petrunin
    • 1
  • L. B. Maksaeva
    • 1
  • N. A. Gladkikh
    • 1
  • E. N. Narkevich
    • 1
  • T. A. Yurasova
    • 1
  • A. A. Rybkin
    • 1
  • E. V. Terekhova
    • 1
  • V. A. Kotenev
    • 1
  • E. N. Kablov
    • 1
  • A. Yu. Tsivadze
    • 1
  1. 1.A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations