Advertisement

Niobium Powders of Mesoporous Structure

  • V. M. Orlov
  • M. V. Kryzhanov
  • A. I. Knyazeva
  • R. N. Osaulenko
Nanoscale and Nanostructured Materials and Coatings

Abstract

The mesoporous structure of niobium powders of specific surface areas from 32 to 150 m2/g obtained through reduction of niobium-oxide compounds by magnesium vapors has been investigated. A doubling of the specific surface area of magnesium-thermic niobium powders in comparison to tantalum powders has been shown to be caused by the larger volume and smaller size of pores. For a powder with a specific surface area of 150 m2/g, 90% of the surface is governed by pores of sizes smaller than 5 nm. Although the X-ray pattern of the powder corresponds to the metal niobium, 96.5% of this powder weight consists of a natural surface-oxide film, according to the TGA data. The thickness of this oxide decreases in comparison with the surface oxide on the compact metal depending on the powder mesoporous structure.

Keywords

niobium powder magnesium niobate magnesium-thermic reduction surface mesoporous structure natural surface oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jackson, N.F. and Hendy, J.C., Electrocomponent Sci. Technol., 1974, vol. 1, p.27.CrossRefGoogle Scholar
  2. 2.
    Serjak, W.A., Schechter, L., Tripp, T.B., et al., Passive Compon. Ind., 2000, vol. 2, p.17.Google Scholar
  3. 3.
    Habecker, K.A. and Fife, J.A., US Patent 7749297, 2010.Google Scholar
  4. 4.
    Yoon, J.S., Cho, S.W., Kim, Y.S., et al., Met. Mater. Int., 2009, vol. 15, p.405.CrossRefGoogle Scholar
  5. 5.
    Yoon, J.S., Lee, G.H., Hong, S.J., et al., Curr. Nanosci., 2014, vol. 10, p.131.CrossRefGoogle Scholar
  6. 6.
    Yuan, B. and Okabe, T.H., J. Electrochem. Soc., 2007, vol. 154, p. E1.CrossRefGoogle Scholar
  7. 7.
    Park, I.I., Okabe, T.H., Waseda, Y., et al., Mater. Trans., 2001, vol. 42, p.850.CrossRefGoogle Scholar
  8. 8.
    Baba, M., Ono, Y., and Suzuki, R.O., J. Phys. Chem. Solids, 2005, vol. 66, p.466.CrossRefGoogle Scholar
  9. 9.
    Baba, M., Kikuchi, T., and Suzuki, R.O., J. Phys. Chem. Solids, 2015, vol. 78, p.101.CrossRefGoogle Scholar
  10. 10.
    Schnitter, C., Merker, U., and Michaelis, A., Proc. 22nd Capacitor and Resistor Technology Symposium - CARTS 2002, New Orleans, LA, 2002, p.26.Google Scholar
  11. 11.
    Müller, R., Bobeth, M., Brumm, H., et al., Int. J. Mater. Res., 2007, vol. 98, p. 1138.CrossRefGoogle Scholar
  12. 12.
    Orlov, V.M. and Kryzhanov, M.V., RF Patent 2484927, 2013.Google Scholar
  13. 13.
    Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Dokl. Chem., 2015, vol. 465, p.257.CrossRefGoogle Scholar
  14. 14.
    Orlov, V.M. and Kryzhanov, M.V., Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 7, p.596.CrossRefGoogle Scholar
  15. 15.
    Orlov, V.M., Kryzhanov, M.V., and Knyazeva, A.I., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p.814.CrossRefGoogle Scholar
  16. 16.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., et al., Pure Appl. Chem., 1985, vol. 57, p.603.CrossRefGoogle Scholar
  17. 17.
    Delheusy, M., Stierle, A., Kasper, N., et al., Appl. Phys. Lett., 2008, vol. 92, p. 101911.CrossRefGoogle Scholar
  18. 18.
    Orlov, V.M., Osaulenko, R.N., Kryzhanov, M.V., et al., Inorg. Mater., 2017, vol. 53, p. 391.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Orlov
    • 1
  • M. V. Kryzhanov
    • 1
  • A. I. Knyazeva
    • 1
  • R. N. Osaulenko
    • 2
  1. 1.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  2. 2.Petrozavodsk State UniversityPetrozavodsk, Republic of KareliaRussia

Personalised recommendations