Advertisement

The Effect of Microarc Oxidation on the Structure and Hardness of Aluminum-Oxide Coatings Formed by Plasma Spraying on Titanium

  • V. A. Koshuro
  • A. A. Fomin
  • I. V. Rodionov
  • M. A. Fomina
New Substances, Materials and Coatings
  • 14 Downloads

Abstract

Coatings formed by plasma spraying of electrocorundum on VT6 titanium alloy and subsequent microarc oxidation at different current densities were examined. The parameters of structure and hardness of metal-oxide layers were studied. The effect of current density on them was also found. During microarc oxidation, the open porosity (from 50.3 ± 4.5 to 10.3 ± 1.5%), the thickness (from 47.4 ± 3.3 to 30.2 ± 5.3 μm), and the average size of structural elements of presprayed coating were decreased, while its hardness was increased from 760 ± 486 to 875 ± 238 HV2. The magnitude of changes in the structure of the plasma coatings depended on the current density during modification. Microarc oxidation makes it possible to form structural elements in the form of pores and crystals with a size from 15 to 150 μm on the surface of sprayed aluminumoxide coatings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, X. and Liu, C.R., Mach. Sci. Technol., 1999, vol. 3, no. 1, pp. 107–139.CrossRefGoogle Scholar
  2. 2.
    Machado, A.R. and Wallbank, J., Proc. Inst. Mech. Eng., Part B, 1990, vol. 204, no. 1, pp. 53–60.CrossRefGoogle Scholar
  3. 3.
    Rajendran, R., Eng. Failure Anal., 2012, vol. 26, pp. 355–369.CrossRefGoogle Scholar
  4. 4.
    Dahotre, S.N., Vora, H.D., Pavani, K., et al., Appl. Surf. Sci., 2013, vol. 271, pp. 141–148.CrossRefGoogle Scholar
  5. 5.
    Elias, C.N., Lima, J.H., Valiev, R., et al., JOM, 2008, vol. 60, no. 3, pp. 46–49.CrossRefGoogle Scholar
  6. 6.
    Niinomi, M., J. Mech. Behav. Biomed. Mater., 2008, vol. 1, no. 1, pp. 30–42.CrossRefGoogle Scholar
  7. 7.
    Kim, Y.Z., Murakami, T., Narushima, T., et al., ISIJ Int., 2008, vol. 48, no. 1, pp. 89–98.CrossRefGoogle Scholar
  8. 8.
    Tang, C.B., Liu, D.X., Li, F.Q., et al., Mater. Sci. Forum, 2011, vol. 675, pp. 1253–1257.CrossRefGoogle Scholar
  9. 9.
    Zhang, Y.S., Han, Z., Wang, X., et al., Tribol. Int., 2017, vol. 111, pp. 192–196.CrossRefGoogle Scholar
  10. 10.
    Zhecheva, A., Sha, W., Malinov, S., et al., Surf. Coat. Technol., 2005, vol. 200, no. 7, pp. 2192–2207.CrossRefGoogle Scholar
  11. 11.
    Pohrelyuk, I.N. and Yaskiv, O.I., Russ. J. Non-Ferrous Met., 2008, vol. 49, no. 1, pp. 49–54.Google Scholar
  12. 12.
    Jamesh, M., Narayanan, T.S.N.S., and Chu, P.K., Mater. Chem. Phys., 2013, vol. 138, no. 2, pp. 565–572.CrossRefGoogle Scholar
  13. 13.
    Diamanti, M.V., Del Curto, B., and Pedeferri, M.P., J. Appl. Biomater. Biomech., 2011, vol. 9, no. 1, pp. 55–69.Google Scholar
  14. 14.
    Rudnev, V.S., Prot. Met. Phys. Chem. Surf., 2008, vol. 44, no. 3, pp. 263–272.Google Scholar
  15. 15.
    Nechaev, G.G. and Koshuro, V.A., Fiz. Khim. Obrab. Mater., 2015, no. 5, pp. 29–34.Google Scholar
  16. 16.
    Stojadinovic, S., Vasilic, R., Petkovic, M., et al., Appl. Surf. Sci., 2013, vol. 265, pp. 226–233.CrossRefGoogle Scholar
  17. 17.
    Shokouhfar, M., Dehghanian, C., Montazeri, M., et al., Appl. Surf. Sci., 2012, vol. 258, no. 7, pp. 2416–2423.CrossRefGoogle Scholar
  18. 18.
    Rudnev, V.S., Yarovaya, T.P., Nedozorov, P.M., et al., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 5, pp. 621–628.CrossRefGoogle Scholar
  19. 19.
    Afanas’ev, V.P., Vorotilov, K.A., and Mukhin, N.V., Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 295–301.CrossRefGoogle Scholar
  20. 20.
    Dam, D.T., Wang, X., and Lee, J.M., Nano Energy, 2013, vol. 2, no. 6, pp. 1303–1313.CrossRefGoogle Scholar
  21. 21.
    Villa, F., Static and Fatigue Behavior of Structural Light Alloys in Air and Aggressive Environment—Investigation and Innovation with Thin Hard Coatings, 2016.Google Scholar
  22. 22.
    Le Guéhennec, L., Soueidan, A., Layrolle, P., et al., Dent. Mater., 2007, vol. 23, no. 7, pp. 844–854.CrossRefGoogle Scholar
  23. 23.
    Hung, K.Y., Lo, S.C., Shih, C.S., et al., Surf. Coat. Technol., 2013, vol. 231, pp. 337–345.CrossRefGoogle Scholar
  24. 24.
    Fomin, A.A., Fomina, M., Koshuro, V., et al., Ceram. Int., 2017, vol. 43, no. 14, pp. 11197–11204.CrossRefGoogle Scholar
  25. 25.
    Heimann, R.B., Key Eng. Mater., 1996, vol. 122, pp. 399–442.CrossRefGoogle Scholar
  26. 26.
    Di Girolamo, G., Brentari, A., Blasi, C., et al., Ceram. Int., 2014, vol. 40, no. 8, pp. 12861–12867.CrossRefGoogle Scholar
  27. 27.
    Krishnan, R., Dash, S., Kesavamoorthy, R., et al., Surf. Coat. Technol., 2006, vol. 200, no. 8, pp. 2791–2799.CrossRefGoogle Scholar
  28. 28.
    Dyshlovenko, S., Pawlowski, L., Smurov, I., et al., Surf. Coat. Technol., 2006, vol. 201, no. 6, pp. 2248–2255.CrossRefGoogle Scholar
  29. 29.
    Petorak, C. and Trice, R.W., Surf. Coat. Technol., 2011, vol. 205, no. 10, pp. 3218–3225.CrossRefGoogle Scholar
  30. 30.
    Komlev, D.I., Kalita, V.I., Menshikov, G.A., et al., Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 3, pp. 236–246.CrossRefGoogle Scholar
  31. 31.
    Komlev, D.I., Kalita, V.I., Men’shikov, G.A., et al., Fiz. Khim. Obrab. Mater., 2012, no. 6, pp. 40–50.Google Scholar
  32. 32.
    Koshuro, V.A., Nechaev, G.G., and Lyasnikova, A.V., Tech. Phys., 2014, vol. 59, no. 10, pp. 1570–1572.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Koshuro
    • 1
  • A. A. Fomin
    • 1
  • I. V. Rodionov
    • 1
  • M. A. Fomina
    • 1
  1. 1.Gagarin Saratov State Technical UniversitySaratovRussia

Personalised recommendations