Advertisement

Catalysis in Industry

, Volume 11, Issue 4, pp 342–348 | Cite as

Catalytic Co-Combustion of Peat and Anthracite in a Fluidized Bed

  • N. A. YazykovEmail author
  • A. D. SimonovEmail author
  • Yu. V. DubininEmail author
  • O. O. ZaikinaEmail author
ENGINEERING PROBLEMS. OPERATION AND PRODUCTION

Abstract

The catalytic combustion of peat, anthracite, and their mixture in a ratio of 40 : 60 wt % was studied. The addition of peat with a high yield of volatiles to anthracite increased the degree of burnout of the mixture. When the commercial aluminum-copper-chromium oxide catalyst IK-12-70 was used (bed height 1 m, process temperature 700–750°C, particle size of solid fuel less than 1.25 mm), the degree of burnout was 98.2% (peat), 50.9% (anthracite), and 74.2% (peat–anthracite mixture). For large particles of a shaped peat–anthracite mixture with an equivalent diameter of 11.6–18.6 mm, burnout in the upper part of the fluidized bed of the catalyst was 80.5%. The degree of burnout of large particles fed into the lower part of the fluidized bed was evaluated taking into account the degree of burnout of small particles that passed the bed. When large particles of the shaped peat–anthracite mixture were fed, burnout reached at least 95% at a temperature of 700–750°C and a catalyst bed height of 1 m. To avoid accumulation of ash particles in the fluidized bed, the particle size of peat and anthracite in the shaped fuel should not exceed 1–1.5 mm when using a catalyst with a particle size of 2 mm.

Keywords:

catalyst fluidized bed combustion peat anthracite mixture 

Notes

FUNDING

This study was performed under the government contract at Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. АААА-А17-117041710075-0).

REFERENCES

  1. 1.
    Parmon, V.N., Gruzdkov, Yu.A., Burdukov, A.P., Belyaev, L.S., Kler, A.M., Koshelev, A.A., Marchenko, O.V., Sutyrina, O.B., and Tyurina, E.A., Ross. Khim. Zh., 1994, vol. 38, no. 3, pp. 40–55.Google Scholar
  2. 2.
    Alkhasov, A.B., Vozobnovlyaemaya energetika (Renewable Energy), Moscow: Fizmatlit, 2010.Google Scholar
  3. 3.
    Pugach, L.I., Serant, F.A., and Serant, D.F., Netraditsionnaya energetika – vozobnovlyaemye istochniki, ispol’zovanie biomassy, termokhimicheskaya podgotovka, ekologicheskaya bezopasnost’: Ucheb. posobie (Unconventional Energy: Renewable Sources, Biomass Utilization, Thermochemical Preparation, and Environmental Safety. Textbook), Novosibirsk: Novosib. Gos. Tekhn. Univ., 2006.Google Scholar
  4. 4.
    Elistratov, V.V., Vozobnovlyaemaya energetika (Renewable Energy), Saint-Petersburg: S.-Peterb. Polytekhn. Univ., 2011.Google Scholar
  5. 5.
    Energosberezhenie i vozobnovlyaemye istochniki energii. Uchebno-metodicheskoe posobie (Energy Saving and Renewable Energy Sources. Study Guide), Kundas, S.P., Ed., Minsk: Sakharov Mezhdunar. Gos. Ekol. Univ., 2011.Google Scholar
  6. 6.
    Potentsial i vozmozhnosti ispol’zovaniya torfa (Potentiality and Application Possibilities of Peat), Moscow: NP “Rostorf”, 2014. http://rostorf.ru/files/prezentaciya_ universal.pdf. Cited October 7, 2019.Google Scholar
  7. 7.
    Tcvetkov, P.S., Mires Peat, 2017, vol. 19, pp. 1–12. http://www.mires-and-peat.net/media/map19/map_ 19_14.pdf. Cited October 7, 2019.Google Scholar
  8. 8.
    Zhovmir, N.M., Geletukha, G.G., Zheleznaya, T.A., and Slenkin, M.V., Prom. Teplotekh., 2006, vol. 28, no. 2, pp. 75–85.Google Scholar
  9. 9.
    Shchudlo, T.S., Dunaevskaya, N.I., Bestsennyi, I.V., and Bondzik, D.L., Abstract of Papers, Trudy VIII Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Gorenie Tverdogo Topliva” (Proc. VIII All-Russian Conference with International Participation “Combustion of Solid Fuel”), Novosibirsk, 2012, pp. 111.1–111.8. http:// www.itp.nsc.ru/conferences/gtt8/files/111Shchudlo.pdf. Cited October 7, 2019.Google Scholar
  10. 10.
    Mikhalev, A.V., Fluidized bed hydrodynamics and its effect on the efficiency and environmental compatibility of the anthracite culm and biograins co-combustion process, Cand. Sci. (Eng.) Dissertation, Tambov: Tambov State Techn. Univ., 2007.Google Scholar
  11. 11.
    Is’emin, R.L., Konyakhin, V.V., Kuz’min, S.N., Mikhalev, A.V., Zorin, A.T., and Budkova, E.V., Energ. Elektrif., 2006, no. 9, pp. 45–51.Google Scholar
  12. 12.
    Kirsanov, Yu.I., Papers presented at Vserossiiskoi molodezhnoi konferentsii “Ekologicheskie problemy promyshlenno razvitykh i resursodobyvayushchikh regionov: puti resheniya” (All-Russian Research and Practice Conference of Young Scientists “Environmental Problems of Industrial and Resource-Producing Regions: Ways of Solution”), Kemerovo, December 22, 2016; report no. 20.Google Scholar
  13. 13.
    Khodakov, Yu.S., Oksidy azota i teploenergetika (Nitrogen Oxides and Heat Power Industry), Moscow: EST-M, 2001.Google Scholar
  14. 14.
    Oka, S.N., Fluidized Bed Combustion, New York: Marcel Dekker, 2004.Google Scholar
  15. 15.
    Belousov, V.N., Smorodin, S.N., and Smirnova, O.S., Toplivo i teoriya goreniya. Uchebnoe posobie (Fuel and Combustion Theory. Textbook), part I: Toplivo (Fuel), Saint-Petersburg: SPbGTURP, 2011.Google Scholar
  16. 16.
    Teplovoi raschet kotlov (Normativnyi metod) (Thermal Design of Boilers. Normative Method), Kagan, G.M., Ed., Saint-Petersburg: NPO TsKTI, 1998.Google Scholar
  17. 17.
    Mikhailov, A.V., Zap. Gorn. Inst., 2016, vol. 220, pp. 538–544.Google Scholar
  18. 18.
    Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986.Google Scholar
  19. 19.
    Parmon, V.N., Ismagilov, Z.R., Kirillov, V.A., and Simonov, A.D., Katal. Prom-sti, 2002, no. 3, pp. 20–29.Google Scholar
  20. 20.
    Parmon, V.N., Simonov, A.D., Sadykov, V.A., and Tikhov, S.F., Combust., Explos. Shock Waves, 2015, vol. 51, no. 2, pp. 143–150.CrossRefGoogle Scholar
  21. 21.
    Simonov, A.D., Fedorov, I.A., Dubinin, Yu.V., Yazykov, N.A., Yakovlev, V.A., and Parmon, V.N., Catal. Ind., 2013, vol. 5, no. 1, pp. 42–49.CrossRefGoogle Scholar
  22. 22.
    Dubinin, Yu.V., Simonov, A.D., Yazykov, N.A., and Yakovlev, V.A., Catal. Ind., 2015, vol. 7, no. 4, pp. 314–320.CrossRefGoogle Scholar
  23. 23.
    Yazykov, N.A., Dubinin, Yu.V., Simonov, A.D., Reshetnikov, S.I., and Yakovlev, V.A., Chem. Eng. J., 2016, vol. 283, pp. 649–655.CrossRefGoogle Scholar
  24. 24.
    Chibisova, N.V., Praktikum po ekologicheskoi khimii (Laboratory Manual on Environmental Chemistry), Kaliningrad: Kaliningr. Gos. Univ., 1999.Google Scholar
  25. 25.
    Yazykov, N.A., Simonov, A.D., Aflyatunov, A.S., Dubinin, Yu.V., Selishcheva, S.A., Yakovlev, V.A., and Stepanenko, A.I., Chem. Sustainable Dev., 2017, vol. 25, no. 3, pp. 313–321.Google Scholar
  26. 26.
    Sovremennye podkhody k issledovaniyu i opisaniyu protsessov sushki poristykh tel (Contemporary Approaches to the Study and Description of Drying Processes for Porous Bodies), Parmon, V.N, Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001.Google Scholar
  27. 27.
    Zyryanov, V.V. and Zyryanov, D.V., Zola unosa – tekhnogennoe syr’e (Fly Ash as Technogenic Raw Materials), Moscow: IPTs Maska, 2009.Google Scholar
  28. 28.
    Manovica, V., Gruborb, B., and Loncarevic, D., Chem. Eng. Sci., 2006, vol. 61, no. 5, pp. 1676–1685.CrossRefGoogle Scholar
  29. 29.
    Vereshchagin, S.N., Kondratenko, E.V., Rabchevskii, E.V., Anshits, N.N., Solov’ev, L.A., and Anshits, A.G., Kinet. Catal., 2012, vol. 53, no. 4, pp. 449–455.CrossRefGoogle Scholar
  30. 30.
    Anshits, A.G., Bajukov, O.A., Kondratenko, E.V., Anshits, N.N., Pletnev, O.N., Rabchevskii, E.V., and Solovyev, L.A., Appl. Catal., A, 2016, vol. 524, pp. 192–199.Google Scholar
  31. 31.
    Sharonova, O.M., Anshits, N.N., Solovyov, L.A., Salanov, A.N., and Anshits, A.G., Fuel, 2013, vol. 111, pp. 332–343.CrossRefGoogle Scholar
  32. 32.
    Sharonova, O.M., Anshits, N.N., and Anshits, A.G., Inorg. Mater., 2013, vol. 49, no. 6, pp. 586–594.CrossRefGoogle Scholar
  33. 33.
    Galloway, B.D., Sasmaz, E., and Padak, B., Fuel, 2015, vol. 145, pp. 79–83.CrossRefGoogle Scholar
  34. 34.
    Fang, F., Li, Z.-S., Cai, N.-S., Tang, X.-Y., and Yang, H.-T., Chem. Eng. Sci., 2011, vol. 66, no. 6, pp. 1142–1149.CrossRefGoogle Scholar
  35. 35.
    Farahbod, F. and Farahmand, S., Fuel, 2015, vol. 156, pp. 103–109.CrossRefGoogle Scholar
  36. 36.
    Jia, X., Wang, Q., Cen, K., and Chen, L., Fuel, 2016, vol. 163, pp. 157–165.CrossRefGoogle Scholar
  37. 37.
    Ibraeva, K.T., Manaev, Yu.O., Tabakaev, R.B., Yazykov, N.A., and Zavorin, A.S., Izv. Tomsk. Politekh. Inst., Inzh. Geores., 2019, no. 1, pp. 191–200.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations