Effect of the Type of the Cobalt-Containing Component of a Composite Catalyst on the One-Stage Synthesis of Liquid Hydrocarbons from СО and Н2

  • 2 Accesses


The effect of the type of the cobalt-containing component (Со-Al2O3/SiO2, Co-Re/Al2O3, and Co-Re/TiO2) of a composite catalyst on the combined synthesis and hydroconversion of hydrocarbons by the Fischer–Tropsch process are investigated. The catalytic properties of catalyst samples are studied in a flow reactor with a fixed catalyst layer at 2 MPa and GHSV of 1000 h–1 within a the temperature range of 240–280°С for 40–90 h of continuous operation. The highest values of output and selectivity to C5+ hydrocarbons are obtained for composite catalyst Со-Al2O3/SiO2(35%)/ZSM-5(30%)/Al2O3(30%) at a temperature of 240°C and are 106 kg/(\({\text{m}}_{{{\text{cat}}}}^{3}\) h) and 67.1%, respectively. It is shown that using Co-Re/Al2O3 instead of Со-Al2O3/SiO2 catalyst produces comparable values of catalytic activity, but considerably fewer unsaturated hydrocarbons are found in the products of synthesis. Using Co-Re/TiO2 catalyst and raising the temperature (to 280°С) shifts the molecular weight distribution of the products of synthesis toward the formation of a gasoline fraction. It is found that the rate of catalyst deactivation grows in the order Со-Al2O3/SiO2 > Co-Re/Al2O3 > Co-Re/TiO2.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Ail, S.S. and Dasappa, S., Renewable Sustainable Energy Rev., 2016, vol. 58, pp. 267–286.

  2. 2

    Yakovenko, R.E., Narochnyi, G.B., Savost’yanov, A.P., and Kirsanov, V.A., Chem. Pet. Eng., 2015, vol. 51, nos. 3–4, pp. 159–163.

  3. 3

    Wood, D.A., Nwaoha, C., and Towler, B.F., J. Nat. Gas Sci. Eng., 2012, vol. 9, pp. 196–208.

  4. 4

    Wang, Y., Zhao, W., Li, Z., Wang, H., Wu, J., Li, M., Hu, Z., Wang, Y., Huang, J., and Zhao, Y., J. Porous Mater., 2015, vol. 22, no. 2, pp. 339–345.

  5. 5

    Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., and Lapidus, A.L., Solid Fuel Chem., 2015, vol. 49, no. 6, pp. 356–359.

  6. 6

    Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Saliev, A.N., Sulima, S.I., Zubkov, I.N., Nekroenko, S.V., and Mitchenko, S.A., Pet. Chem., 2017, vol. 57, no. 12, pp. 1186–1189.

  7. 7

    Eggenhuisen, T.M., den Breejen, J.P., Verdoes, D., de Jongh, P.E., and de Jong, K.P., J. Am. Chem. Soc., vol. 132, no. 51, pp. 18318–18325.

  8. 8

    Eschemann, T.O., Oenema, J., and de Jong, K.P., Catal. Today, 2016, vol. 261, pp. 60–66.

  9. 9

    Lapidus, A.L., Pavlova, V.A., Chin, N.K., Eliseev, O.L., Gushchin, V.V., and Davydov, P.E., Pet. Chem., 2009, vol. 49, no. 4, pp. 301–305.

  10. 10

    Todic, B., Nowicki, L., Nikacevic, N., and Bukur, D.B., Catal. Today, 2015, vol. 261, pp. 28–39.

  11. 11

    Zhang, Q., Deng, W., and Wang, Y., J. Energy Chem., 2013, vol. 22, no. 1, pp. 27–38.

  12. 12

    EN (European Standard) 228:2008 (E): Automotive Fuels. Unleaded Petrol. Requirements and Test Methods, 2008.

  13. 13

    GOST (State Standard) 305-2013: Diesel fuel.Specifications, 2013.

  14. 14

    Kibby, C., Jothimurugesan, K., Das, T., Lacheen, H.S., Rea, T., and Saxton. R.J., Catal. Today, 2013, vol. 215, pp. 131–141.

  15. 15

    Wei, L., Zhao, Y., Zhang, Y., Liu, C., Hong, J., Xiao, Q., Xiong, H., and Li, J., ChemCatChem, 2017, vol. 9, no. 20, pp. 3895–3903.

  16. 16

    Deldari, H., Appl. Catal., A, 2005, vol. 293, pp. 1–10.

  17. 17

    Yao, M., Yao, N., Liu, B., Li. S., Xu, L., and Li, X., Catal. Sci. Technol., 2015, vol. 5, no. 5, pp. 2821–2828.

  18. 18

    Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., and Wang, Y., Ind. Eng. Chem. Res., 2016, vol. 55, no. 51, pp. 13008–13019.

  19. 19

    Wang, Y., Jiang, Y., Huang, J., Wang, H., Li, Z., and Wu, J., RSC Adv., 2016, vol. 6, no. 109, pp. 107498–107506.

  20. 20

    Sineva, L.V., Asalieva, E.Yu., and Mordkovich, V.Z., Russ. Chem. Rev., 2015, vol. 84, no. 11, pp. 1176–1189.

  21. 21

    Sartipi, S., Alberts, M., Meijerink, M.J., Keller, T.C., Pérez-Ramírez, J., Gascon, J., and Kapteijn, F., ChemSusChem, 2013, vol. 6, no. 9, pp. 1646–1650.

  22. 22

    Pereira, A.L.C., González-Carballo, J.M, Pérez-Alonso, F.J., Rojas, S., Fierro, J.L.G., and do Carmo Rangel, M., Top. Catal., 2011, vol. 54, nos. 1–4, pp. 179–189.

  23. 23

    Kang, S.-H., Bae, J.W., Sai Prasad, P. S., and Jun, K.-W., Catal. Lett., 2008, vol. 125, pp. 246–270.

  24. 24

    Freitez, A., Pabst, K., Kraushaar-Czarnetzki, B., and Schaub, G., Ind. Eng. Chem. Res., 2011, vol. 50, no. 24, pp. 13732–13741.

  25. 25

    Yang, G., Xing, C., Hirohama, W., Jin, Y., Zeng, C., Suehiro, Y., Wang, T., Yoneyama, Y., and Tsubaki, N., Catal. Today, 2013, vol. 215, pp. 29–35.

  26. 26

    Alkhimov, S.A., Grigor’ev, D.A., and Mikhailov, M.N., Russ. Chem. Bull., 2013, vol. 62, no. 5, pp. 1176–1182.

  27. 27

    Alkhimov, S.A., Grigor’ev, D.A., and Mikhailov, M.N., Katal. Prom-sti, 2013, no. 4, pp. 31–41.

  28. 28

    Sineva, L.V., Mordkovich, V.Z., and Khatkova, E.Yu., Mendeleev Commun., 2013, vol. 23, no. 1, pp. 44–45.

  29. 29

    Narochnyi, G.B., Yakovenko, R.E., Savost’yanov, A.P., and Bakun, V.G., Catal. Ind., 2016, vol. 8, no. 2, pp. 139–144.

  30. 30

    Savost’yanov, A.P., Yakovenko, R.E., Sulima, S.I., Bakun, V.G., Narochnyi, G.B., Chernyshev, V.M., and Mitchenko, S.A., Catal. Today, 2017, vol. 279, part 1, pp. 107–114.

  31. 31

    International Center for Diffraction Data (ICDD). PDF-2 Release 2012. Cited October 6, 2019.

  32. 32

    Young, R.A., The Rietveld Method, Oxford: Oxford University Press, 1995.

  33. 33

    Schanke, D., Vada, S., Blekkan, E.A., Hilmen, A.M., Hoff, A., and Holmen, A., J. Catal., 1995, vol. 156, no. 1, pp. 85–95.

  34. 34

    Xu, D., Li, W., Duan, H., Ge, Q., and Xu, H., Catal. Lett., 2005, vol. 102, nos. 3–4, pp. 229–235.

  35. 35

    Cotton, F. A. and Wilkinson, G., Basic Inorganic Chemistry, New York: Wiley, 1976.

  36. 36

    Bulavchenko, O.A., Cherepanova, S.V., Malakhov, V.V., Dovlitova, L.C., Ishchenko, A.V., and Tsybulya, S.V., Kinet. Catal., 2009, vol. 50, no. 2, pp. 192–198.

  37. 37

    Conte, M., Xu, B., Davies, T.E., Bartley, J.K., Carley, A.F., Taylor, S.H., Khalid, K., and Hutchings, G.J., Microporous Mesoporous Mater., 2012, vol. 164, pp. 207–213.

  38. 38

    Wilson, S.J., J. Solid State Chem., 1979, vol. 30, no. 2, pp. 247–255.

  39. 39

    Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Bakun, V.G., Sulima, S.I., Yakuba, E.S., Sulim, S.I., Yakuba, E.S., and Mitchenko, S.A., Kinet. Catal., 2017, vol. 58, no. 1, pp. 81–91.

  40. 40

    Pardo-Tarifa, F., Cabrera, S., Sanchez-Dominguez, M., and Boutonnet, M., Int. J. Hydrogen Energy, 2017, vol. 42, no. 15, pp. 9754–9765.

Download references


This work was performed on equipment belonging to the Nanotechnologies shared resource center of Platov South Russian State Polytechnic University.


This work was supported by the Russian Foundation for Basic Research, project no. 18-33-00946/18.

Author information

Correspondence to R. E. Yakovenko or I. N. Zubkov or G. B. Narochnyi or S. V. Nekroenko or A. P. Savost’yanov.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Zubkov, I.N., Narochnyi, G.B. et al. Effect of the Type of the Cobalt-Containing Component of a Composite Catalyst on the One-Stage Synthesis of Liquid Hydrocarbons from СО and Н2. Catal. Ind. 11, 286–294 (2019).

Download citation


  • Fischer–Tropsch synthesis
  • composite catalyst
  • cobalt-containing component
  • synthetic hydrocarbons
  • motor oils
  • catalyst performance