Advertisement

Morphological, Structural, and Catalytic Properties of Pd–CeO2/Al2O3 Compositions and Thereof Coatings in the Oxidation of Methane

  • 2 Accesses

Abstract

The morphological and structural properties of Pd–CeO2/Al2O3 catalytic compositions annealed at 100, 500, and 1000°С are studied, along with thereof coatings deposited on metallic foil via cold gas dynamic spraying. The influence of the preparation technique of the initial catalytic composition and introducing active component into a coating on their phase states, particle sizes, and activitites is elucidated. It is shown that introducing active components via impregnation into preliminarily sprayed alumina layer ensures the uniform distribution of Pd and Ce in the support profile, the formation of nanosized PdO particles, and the phase of interaction between the components of the catalyst and support. The impregnated catalyst shows the highest activity in the reaction of methane oxidation. The technique for preparing coatings has no limitations when scaled up and can find application in manufacturing full-size catalysts on metallic foil for different types of power engineering devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Parmon, V.N., Ismagilov, Z.R., Favorskii, O.N., Belokon’, A.A., and Zakharov, V.M., Vestn. Ross. Akad. Nauk, 2007, vol. 77, no. 9, pp. 819–830.

  2. 2

    Chen, J., Arandiyan, H., Gao, X., and Li, J., Catal. Surv. Asia, 2015, vol. 19, no. 3, pp. 140–171.

  3. 3

    Schwartz, W.R., Ciuparu, D., and Pfefferle, L.D., J. Phys. Chem. C, 2012, vol. 116, no. 15, pp. 8587–8593.

  4. 4

    Banerjee, A.C., McGuire, J.M., Lawnick, O., and Bozack, M.J., Catalysts, 2018, vol. 8, no. 7, p. 266.

  5. 5

    Dalla Betta, R.A. and Rostrup-Nielsen, T., Catal. Today, 1999, vol. 47, nos. 1–4, pp. 369–375.

  6. 6

    Choi, J.-S. and Kočí, P., Catalysts, 2016, vol. 6, no. 10, p. 155.

  7. 7

    Heck, R.M., Farrauto, R.J., and Gulati, S.T., Catalytic Air Pollution Control. Commercial Technology, Hoboken, NJ: Wiley, 2009.

  8. 8

    Ciuparu, D., Lyubovsky, M.R., Altman, E., Pfefferle, L.D., and Datye, A., Catal. Rev., 2003, vol. 44, no. 4, pp. 593–649.

  9. 9

    Vatcha, S.R., Energy Convers. Manage., 1997, vol. 38, nos. 10–13, pp. 1327–1334.

  10. 10

    Pfefferle, W.C., J. Energy, 1978, vol. 2, no. 3, pp. 142–146.

  11. 11

    Ismagilov, Z.R., Shikina, N.V., Yashnik, S.A., Zagoruiko, A.N., Kerzhentsev, M.A., Ushakov, V.A., Sazonov, V.A., Parmon, V.N., Zakharov, V.M., Braynin, B.I., and Favorskii, O.N., Catal. Today, 2010, vol. 155, nos. 1–2, pp. 35–44.

  12. 12

    Kuper, W.J., Blaauw, M., van der Berg, F., and Graaf, G.H., Catal. Today, 1999, vol. 47, nos. 1–4, pp. 377–389.

  13. 13

    Ismagilov, Z.R., React. Kinet. Catal. Lett., 1997, vol. 60, no. 2, pp. 215–218.

  14. 14

    Isupova, L.A., Sadykov, V.A., Tikhov, S.F., Kimkhai, O.N., Kovalenko, O.N., Kustova, G.N., Ovsyannikova, I.A., Dovbii, Z.A., Kryukova, G.N., Rozovskii, A.Ya., Tretyakov, V.F., and Lunin, V.V., Catal. Today, 1996, vol. 27, nos. 1–2, pp. 249–256.

  15. 15

    Matsumoto, S., Catal. Today, 2004, vol. 90, nos. 3–4, pp. 183–190.

  16. 16

    Ismagilov, Z.R., Yashnik, S.A., Matveev, A.A., Koptyug, I.V., and Moulijn, J.A., Catal. Today, 2005, vol. 105, nos. 3–4, pp. 484–491.

  17. 17

    Yashnik, S.A., Andrievskaya, I.P., Pashke, O.V., Ismagilov, Z.R., and Mulyain, Ya.A., Katal. Prom-sti, 2007, no. 1, pp. 35–46.

  18. 18

    Bal’zhinimaev, B.S., Suknev, A.P., Gulyaeva, Yu.K., and Kovalyov, E.V., Catal. Ind., 2015, vol. 7, no. 4, pp. 267–274.

  19. 19

    Pinaeva, L.G., Dovlitova, L.S., and Isupova, L.A., Kinet. Catal., 2017, vol. 58, no. 2, pp. 167–178.

  20. 20

    Qu, Z., Wang, Z., Quan, X., Wang, H., and Shu, Y., Chem. Eng. J., 2013, vol. 233, pp. 233–241.

  21. 21

    Zhu, A., Zhou, Y., Wang, Y., Zhu, Q., Liu, H., Zhang, Z., and Lu, H., J. Rare Earths, 2018, vol. 36, no. 12, pp. 1272–1277.

  22. 22

    Forzatti, P., Ballardini, D., and Sighicelli, L., Catal. Today, 1998, vol. 41, nos. 1–3, pp. 87–94.

  23. 23

    Pratt, A.S. and Cairns, J.A., Platinum Met. Rev., 1977, vol. 21, no. 3, pp. 74–83.

  24. 24

    Smith, R.W. and Mutasim, Z.Z., J. Therm. Spray Technol., 1992, vol. 1, no. 1, pp. 57–63.

  25. 25

    Ismagilov, Z.R., Podyacheva, O.Yu., Solonenko, O.P., Pushkarev, V.V., Kuz’min, V.I., Ushakov, V.A., and Rudina, N.A., Catal. Today, 1999, vol. 51, nos. 3–4, pp. 411–417.

  26. 26

    US Patent 5 302 414, 1994.

  27. 27

    Shikina, N., Podyacheva, O., Kosarev, V., and Ismagilov, Z., Mater. Manuf. Processes, 2016, vol. 31, no. 11, pp. 1521–1526.

  28. 28

    Alkhimov, A.P., Kosarev, V.F., and Papyrin, A.N., Dokl. Akad. Nauk, 1990, vol. 315, no. 4, pp. 1062–1065.

  29. 29

    Mayernick, A.D. and Janik, M.J., J. Catal., 2011, vol. 278, no. 1, pp. 16–25.

  30. 30

    Xiao, L-H., Sun, K-P., Xu, X.-L., and Li, X.-N., Catal. Commun., 2005, vol. 6, no. 12, pp. 796–801.

  31. 31

    Colussi, S., Gayen, A., Camellone, M.F., Boaro, M., Llorca, J., Fabris, S., and Trovarelli, A., Angew. Chem., Int. Ed. Engl., 2009, vol. 48, no. 45, pp. 8481–8484.

  32. 32

    Gulyaev, R.V., Kardash, T.Yu., Malykhin, S.E., Stonkus, O.A., Ivanova, A.S., and Boronin, A.I., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 26, pp. 13523–13539.

  33. 33

    Wang, N., Li, S., Zong, Y., and Yao, Q., J. Aerosol Sci., 2017, vol. 105, pp. 64–72.

  34. 34

    Lei, Y., Li, W., Liu, Q., Lin, Q., Zheng, X., Huang, Q., Guan, S., Wang, X., Wang, C., and Li, F., Fuel, 2018, vol. 233, pp. 10–20.

  35. 35

    Tsud, N., Veltruská, K., and Matolín, V., Surf. Sci., 2002, vols. 507–510, pp. 808–812.

  36. 36

    Sun, K., Liu, J., Nag, N., and Browning, N.D., Catal. Lett., 2002, vol. 84, nos. 3–4, pp. 193–199.

Download references

ACKNOWLEDGMENTS

The authors thank V.F. Kosarev and V.V. Lavrushin at the Institute of Theoretical and Applied Mechanics SB RAS for performing cold gas spraying experiments.

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-43-54 0015.

Author information

Correspondence to N. V. Shikina or O. Yu. Podyacheva or A. V. Ishchenko or S. R. Khairulin or T. B. Tkachenko or A. A. Moroz or Z. R. Ismagilov.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shikina, N.V., Podyacheva, O.Y., Ishchenko, A.V. et al. Morphological, Structural, and Catalytic Properties of Pd–CeO2/Al2O3 Compositions and Thereof Coatings in the Oxidation of Methane. Catal. Ind. 11, 323–334 (2019). https://doi.org/10.1134/S2070050419040081

Download citation

Keywords:

  • catalytic coating
  • cold gas dynamic spraying
  • methane oxidation
  • morphology