Catalysis in Industry

, Volume 11, Issue 4, pp 301–312 | Cite as

Optimizing the Properties of an Alumina Support of Hydrotreating Catalysts by Introducing Boron and Sulfur at the Stage of Obtaining Pseudoboehmite by Hydrothermal Treatment of the Product Produced by Flash Calcination of Gibbsite

  • V. V. DanilevichEmail author
  • E. A. StolyarovaEmail author
  • Yu. V. VatutinaEmail author
  • E. Yu. GerasimovEmail author
  • V. A. UshakovEmail author
  • A. V. SaikoEmail author
  • O. V. KlimovEmail author
  • A. S. NoskovEmail author


The problem of optimizing the textural characteristics and chemical composition of the alumina support of a vacuum gasoil hydrotreating catalyst is considered. The catalyst is synthesized using the state-of-the-art environmentally friendly technology of flash calcination of gibbsite. Ways of increasing its specific surface area by introducing inorganic additives containing boron or sulfur at the stage of synthesizing boehmite with needle-shaped particles are developed. It is established that introducing such modifiers raises SBET by 50–100 m2/g, relative to the maximum values that can be attained by varying the standard parameters of hydrothermal treatment. It is shown that introducing boron at the stage of boehmite synthesis improves the catalytic activity of CoNiMoP catalyst in the hydrodesulfurization and hydrodenitrogenation of vacuum gasoil by two or more times, relative to a similar catalyst doped with boron from an impregnating solution.


flash calcination pseudoboehmite alumina aluminum borate hydrotreating vacuum gasoil 



This work was performed as part of a State Task for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. AAAA-A17-117041710077-4.


  1. 1.
    Vosoughi, V., Dalai, A.K., Abatzoglou, N., and Hu, Y., Appl. Catal., A, 2017, vol. 547, pp. 155–163.Google Scholar
  2. 2.
    Sircar, S., Rao, M.B., and Golden, T.C., in Adsorption on New and Modified Inorganic Sorbents, Dąbrowski, A., Ed., New York: Elsevier, 1996, vol. 99, Supplement C, ch. 12, pp. 629–646.Google Scholar
  3. 3.
    Banzaraktsaeva, S.P., Ovchinnikova, E.V., Isupova, L.A., and Chumachenko, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 169–178.CrossRefGoogle Scholar
  4. 4.
    Ivanova, A.S., Kinet. Catal., 2012, vol. 53, no. 4, pp. 425–439.CrossRefGoogle Scholar
  5. 5.
    Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts, Stiles, A.B., Ed., Boston : Butterworths, 1987.Google Scholar
  6. 6.
    Digne, M., Sautet, P., Raybaud, P., Toulhoat, H., Artacho, E., J. Phys. Chem. B, 2002, vol. 106, no. 20, pp. 5155–5162.CrossRefGoogle Scholar
  7. 7.
    Hochepied, J.F. and Nortier, P., Powder Technol., 2002, vol. 128, nos. 2–3, pp. 268–275.Google Scholar
  8. 8.
    Yoldas, B.E., J. Appl. Chem. Biotechnol., 1973, vol. 23, no. 11, pp. 803–809.CrossRefGoogle Scholar
  9. 9.
    Mishra, D., Anand, S., Panda, R.K., and Das, R.P., Mater. Lett., 2000, vol. 42, no. 1, pp. 38–45.CrossRefGoogle Scholar
  10. 10.
    Egorova, S.R., Mukhamed’yarova, A.N., Kurbangaleeva, A.Z., Zhang, Y., and Lamberov, A.A., React. Kinet., Mech. Catal., 2018, vol. 125, no. 2, pp. 873–885.CrossRefGoogle Scholar
  11. 11.
    Miño, A., Lancelot, C., Blanchard, P., Lamonier, C., Rouleau, L., Roy-Auberger, M., Royer, S., and Payen, E., Appl. Catal., A, 2017, vol. 530, pp. 145–153.Google Scholar
  12. 12.
    Rayo, P., Rodríguez-Hernández, A., Torres-Mancera, P., Muñoz, J.A.D., Ancheyta, J., and García de León, R.G., Catal. Today, 2018, vol. 305, pp. 2–12.CrossRefGoogle Scholar
  13. 13.
    Isupova, L.A., Tanashev, Y.Y., Kharina, I.V., Moroz, E.M., Litvak, G.S., Boldy’reva, N.N., Paukshtis, E.A., Burgina, E.B., Budneva, A.A., Shmakov, A.N., Rudina, N.A., Kruglyakov, V.Y., and Parmon, V.N., Chem. Eng. J., 2005, vol. 107, nos. 1–3, pp. 163–169.Google Scholar
  14. 14.
    Jaworska-Galas, Z., Janiak, S., Miśta, W., Wrzyszcz, J., and Zawadzki, M., J. Mater. Sci., 1993, vol. 28, no. 8, pp. 2075–2078.CrossRefGoogle Scholar
  15. 15.
    Matveyeva, A.N., Pakhomov, N.A., and Murzin, D.Yu., Ind. Eng. Chem. Res., 2016, vol. 55, no. 34, pp. 9101–9108.CrossRefGoogle Scholar
  16. 16.
    Danilevich, V.V., Klimov, O.V., Nadeina, K.A., Gerasimov, E.Yu., Cherepanova, S.V., Vatutina, Yu.V., and Noskov, A.S., Superlattices Microstruct., 2018, vol. 120, pp. 148–160.CrossRefGoogle Scholar
  17. 17.
    Kul’ko, E.V., Ivanova, A.S., Kruglyakov, V.Yu., Moroz, E.M., Shefer, K.I., Litvak, G.S., Kryukova, G.N., Tanashev, Yu.Yu., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 2, pp. 316–326.CrossRefGoogle Scholar
  18. 18.
    Jovanović, N., Novaković, T., Janaćković, J., and Terlecki-Baričević, A., J. Colloid Interface Sci., 1992, vol. 150, no. 1, pp. 36–41.CrossRefGoogle Scholar
  19. 19.
    Safaei, M., J. Aust. Ceram. Soc., 2017, vol. 53, no. 2, pp. 485–490.CrossRefGoogle Scholar
  20. 20.
    Salomão, R., Kawamura, M.A., Souza, A.D.V., and Sakihama, J., Interceram., 2017, vol. 66, no. 7, pp. 28–37.Google Scholar
  21. 21.
    Zolotovskii, B.P., Buyanov, R.A., Bukhtiyarova, G.A., Demin, V.V., and Tsybulevskii, A.M., React. Kinet. Catal. Lett., 1995, vol. 55, no. 2, pp. 523–535.CrossRefGoogle Scholar
  22. 22.
    Tanashev, Yu.Yu., Moroz, E.M., Isupova, L.A., Ivanova, A.S., Litvak, G.S., Amosov, Yu.I., Rudina, N.A., Shmakov, A.N., Stepanov, A.G., Kharina, I.V., Kul’ko, E.V., Danilevich, V.V., Balashov, V.A., Kruglyakov, V.Yu., Zolotarskii, I.A., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 1, pp. 153–161.CrossRefGoogle Scholar
  23. 23.
    Synthesis of Solid Catalysts, De Jong, K., Ed., New York: Wiley, 2009.Google Scholar
  24. 24.
    Ancheyta, J., Rana, M.S., and Furimsky, E., Catal. Today, 2005, vol. 109, nos. 1–4, pp. 3–15.Google Scholar
  25. 25.
    Klimov, O.V., Leonova, K.A., Koryakina, G.I., Gerasimov, E.Yu., Prosvirin, I.P., Cherepanova, S.V., Budukva, S.V., Pereyma, V.Yu., Dik, P.P., Parakhin, O.A., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 66–77.Google Scholar
  26. 26.
    Zhang, W., Zheng, X., Zhao, X., Zheng, Y., and Jiang, L., Mater. Lett., 2015, vol. 160, pp. 85–87.CrossRefGoogle Scholar
  27. 27.
    Dumeignil, F., Sato, K., Imamura, M., Matsubayashi, N., Payen, E., and Shimada, H., Appl. Catal., A, 2006, vol. 315, pp. 18–28.Google Scholar
  28. 28.
    Danilevich, V.V., Isupova, L.A., Paukshtis, E.A., and Ushakov, V.A., Kinet. Catal., 2014, vol. 55, no. 3, pp. 372–379.CrossRefGoogle Scholar
  29. 29.
    Danilevich, V.V., Lakhmostov, V.S., Zakharov, V.P., Tanashev, Yu.Yu., Sokolov, D.N., Isupova, L.A., and Parmon, V.N., Katal.Prom-sti, 2016, vol. 16, no. 1, pp. 13–28.Google Scholar
  30. 30.
    Klimov, O.V., Nadeina, K.A., Dik, P.P., Koryakina, G.I., Pereyma, V.Yu., Kazakov, M.O., Budukva, S.V., Gerasimov, E.Yu., Prosvirin, I.P., Kochubey, D.I., and Noskov, A.S., Catal. Today, 2016, vol. 271, pp. 56–63.CrossRefGoogle Scholar
  31. 31.
    Sing, K.S.W., Colloids Surf., A, 2004, vol. 241, nos. 1–3, pp. 3–7.Google Scholar
  32. 32.
    Klimov, O.V. Vatutina, Y.V., Nadeina, K.A., Kazakov, M.O., Gerasimov, E.Y., Prosvirin, I.P., Larina, T.V., and Noskov, A.S., Catal. Today, 2018, vol. 305, pp. 192–202.CrossRefGoogle Scholar
  33. 33.
    Karouia, F., Boualleg, M., Digne, M., et al., Powder Technol., 2013, vol. 237, pp. 602–609.CrossRefGoogle Scholar
  34. 34.
    Tsybulya, S.V. and Kryukova, G.N., Phys. Rev. B: Solid State, 2008, vol. 77, no. 2.
  35. 35.
    Lavrenov, A.V., Buluchevskiy, E.A., Karpova, T.R., Moiseenko, M.A., Mikhailova, M.S., Chumachenko, Y.A., Skoplyuk, A.A., Gulyaeva, T.I., Arbuzov, A.B., Leontieva, N.N., and Drozdov, V.A., Chem. Sustainable Dev., 2011, vol. 1, pp. 81–89.Google Scholar
  36. 36.
    Karpova, T.R., Buluchevskiy, E.A., Lavrenov, A.V., Leontyeva, N.N., Trenikhin, M.V., Gulyaeva, T.I., and Talzi, V.P., Chem. Sustainable Dev., 2013, vol. 1, pp. 53–60.Google Scholar
  37. 37.
    Koval’skaya, A.A., Nadeina, K.A., Kazakov, M.O., Danilevich, V.V., Danilova, I.G., Gerasimov, E.Yu., Klimov, O.V., and Noskov, A.S., Russ. J. Appl. Chem., 2018, vol. 91, no. 12, pp. 2022–2029.CrossRefGoogle Scholar
  38. 38.
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.Google Scholar
  39. 39.
    Thommes, M. and Cychosz, K.A., Adsorption, 2014, vol. 20, nos. 2–3, pp. 233–250.CrossRefGoogle Scholar
  40. 40.
    Vatutina, Y.V., Klimov, O.V., Nadeina, K.A., Danilova, I.G., Gerasimov, E.Y., Prosvirin, I.P., and Noskov, A.S., Appl. Catal., B, 2016, vol. 199, pp. 23–32.CrossRefGoogle Scholar
  41. 41.
    Usman, U., Takaki, M., Kubota, T., and Okamoto, Y., Appl. Catal., A, 2005, vol. 286, no. 1, pp. 148–154.Google Scholar
  42. 42.
    Azizi, N., Ali, S.A., Alhooshani, K., Kim, T., Lee, Y., Park, J.-I., Miyawaki, J., Yoon, S.-H., and Mochida, I., Fuel Process. Technol., 2013, vol. 109, pp. 172–178.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations