Advertisement

Structural and Electronic Properties of Highly Dispersed Particles of the Active Components of Pd/Al2O3 Catalysts of Butadiene-1,3 Hydrogenation

  • 3 Accesses

Abstract

The effect of the acidic characteristics of an alumina support on the properties of formed palladium particles is studied to improve the activity of catalysts for the hydrogenation of unsaturated hydrocarbons of the pyrogasoline fraction. High catalytic activity is characteristic of highly dispersed palladium particles, but the surfaces of palladium particles are blocked by unsaturated hydrocarbons, due to their electron deficiency. In this work, palladium/alumina catalysts with supports of different acidities due to chemical modification with various reagents are studied via NH3 temperature-programed desorption, transmission electron microscopy, and X-ray photoelectron spectroscopy. The samples are subjected to catalytic tests in the butadiene-1,3 hydrogenation reaction under laboratory conditions. The catalysts on supports with acidic modifiers display low butadiene-1,3 conversion and higher selectivity toward butene-1, relative to an unmodified sample. The catalysts on the supports treated with basic additives displayed high butadiene-1,3 conversion while retaining their selectivities toward butene-1 and butane.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Moyes, R.B., Wells, P.B., Grant, J., and Salman, N.Y., Appl. Catal., A, 2002, vol. 229, nos. 1–2, pp. 251–259.

  2. 2

    Bhogeswararao, S. and Srinivas, D., J. Catal., 2015, vol. 327, pp. 65–77.

  3. 3

    Lonergan, W.W., Xing, X., Zheng, R., Qi, S., Huang, B., and Chen, J.G, Catal. Today, 2011, vol. 160, no. 1, pp. 61–69.

  4. 4

    Benkhaled, M., Descorme, C., Duprez, D., Morin, S., Thomazeau, C., and Uzio, D., Appl. Catal., A, 2008, vol. 346, nos. 1–2, pp. 36–43.

  5. 5

    Silvestre-Albero, J., Rupprechter, G., and Freund, H.-J., Chem. Commun., 2006, no. 1, pp. 80–82.

  6. 6

    Silvestre-Albero, J., Borasio, M., Rupprechter, G., and Freund, H.-J., Catal. Commun., 2007, vol. 8, no. 3, pp. 292–298.

  7. 7

    Derrien, M.L., Stud. Surf. Sci. Catal., 1986, vol. 27, pp. 613–666.

  8. 8

    Ouchaib, T., Massardier, J., and Renouprez, A., J. Catal., 1989, vol. 119, no. 2, pp. 517–520.

  9. 9

    Mittendorfer, F., Thomazeau, C., Raybaud, P., and Toulhoat, H., J. Phys. Chem. B, 2003, vol. 107, no. 44, pp. 12287–12295.

  10. 10

    Kang, J.H., Shin, E.W., Kim, W.J., Park, J.D., and Moon, S.H., J. Catal., 2002, vol. 208, no. 2, pp. 310–320.

  11. 11

    Khan, N.A., Shaikhutdinov, S., and Freund, H.-J., Catal. Lett., 2006, vol. 108, nos. 3–4, pp. 159–164.

  12. 12

    Stakheev, A.Yu. and Kustov, L.M., Appl. Catal., A, 1999, vol. 188, nos. 1–2, pp. 3–35.

  13. 13

    Hub, S., Hilaire, L., and Touroude, R., Appl. Catal., 1988, vol. 36, pp. 307–322.

  14. 14

    Boitiaux, J.P., Cosyns, J., and Robert, E., Appl. Catal., 1987, vol. 35, no. 2, pp. 193–209.

  15. 15

    Tardy, B., Noupa, C., Leclercq, C., Bertolini, J.C., Houreau, A., Treilleux, M., Faure, J.P., and Nihoul, G., J. Catal., 1991, vol. 129, no. 1, pp. 1–11.

  16. 16

    Valden, M., Lai, X., and Goodman, D.W., Science, 1998, vol. 281, no. 5383, pp. 1647–1650.

  17. 17

    Mohr, C. and Claus, P., Sci. Prog., 2001, vol. 84, no. 4, pp. 311–334.

  18. 18

    Zhang, Z., Zhu, Y., Asakura, H., Zhang, B., Zhang, J., Zhou, M., Han, Y., Tanaka, T., Wang, A., Zhang, T., and Yan, N., Nat. Comm., 2017, vol. 8. https://www. nature.com/articles/ncomms16100. Cited October 8, 2019.

  19. 19

    Berhault, G., Bisson, L., Thomazeau, C., Verdon, C., and Uzio, D., Appl. Catal., A, 2007, vol. 327, no. 1, pp. 32–43.

  20. 20

    Lucci, F.R., Liu, J., Marcinkowski, M.D., Yang, M., Allard, L.F., Flytzani-Stephanopoulos, M., and Sykes, E.C.H., Nat. Comm., 2015, vol. 6. https://www.nature.com/articles/ncomms9550. Cited October 8, 2019.

  21. 21

    Gaube, J. and Klein, H.-F., Appl. Catal., A, 2014, vol. 470, pp. 361–368.

  22. 22

    Guseva, L., Plastik, 2015, no. 3, pp. 16–20.

  23. 23

    Delage, M., Didillon, B., Huiban, Y., Lynch, J., and Uzio, D., Stud. Surf. Sci. Catal., 2000, vol. 130, pp. 1019–1024.

  24. 24

    Boretskaya, A.V., Il’yasov, I.R., Lamberov, A.A., and Laskin, A.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 161–168.

  25. 25

    Yashnik, S.A., Kuznetsov, V.V., and Ismagilov, Z.R., Chin. J. Catal., 2018, vol. 39, no. 2, pp. 258–274.

  26. 26

    Dai, Q., Zhu, Q., Lou, Y., and Wang, X., J. Catal., 2018, vol. 357, pp. 29–40.

  27. 27

    Borisevich, Yu.P., Fomichev, Yu.V., and Levinter, M.E., Zh. Fiz. Khim., 1982, vol. 56, no. 5, pp. 1298–1299.

  28. 28

    Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.

  29. 29

    Contescu, C., Contescu, A., Schramm, C., Sato, R., and Schwartz, J.A., J. Colloid Interface Sci., 1994, vol. 165, no. 1, pp. 66–71.

  30. 30

    Lamberov, A.A., Khalilov, I.F., Il’yasov, I.R., Bikmurzin, A.Sh., and Gerasimova, A.V., Vestn. Kazan. Tekhnol. Univ., 2011, no. 13, pp. 24–35.

  31. 31

    Saifullin, R.S., Fizikokhimiya neorganicheskikh poli-mernykh i kompozitsionnykh materialov (Physical Chemistry of Inorganic Polymeric and Composite Materials), Moscow: Khimiya, 1990.

  32. 32

    Chesnokov, V.V., Prosvirin, I.P., Zaitseva, N.A., Zaikovskii, V.I., and Molchanov, V.V., Kinet. Catal., 2002, vol. 43, no. 6, pp. 838–846.

  33. 33

    Miegge, P., Rousset, J.L., Tardy, B., Massardier, J., and Bertolini, J.C., J. Catal., 1994, vol. 149, no. 2, pp. 404–413.

  34. 34

    Narayanan, R. and El-Sayed, M.A., J. Am. Chem. Soc., 2004, vol. 126, no. 23, pp. 7194–7195.

  35. 35

    Silvestre-Albero, J., Rupprechter, G., and Freund, H.-J., J. Catal., 2005, vol. 235, no. 1, pp. 52–59.

  36. 36

    Bragin, O.V. and Liberman, A.L., Prevrashcheniya uglevodorodov na metallsoderzhashchikh katalizatorakh (Conversion of Hydrocarbons on Metal-Containing Catalysts), Moscow: Khimiya, 1981.

  37. 37

    Bursian, N.R., Tekhnologiya izomerizatsii parafinovykh uglevodorodov (Isomerization Technology for Paraffin Hydrocarbons), Leningrad: Khimiya, 1985.

Download references

Author information

Correspondence to A. V. Boretskaya or I. R. Ilyasov or A. A. Lamberov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boretskaya, A.V., Ilyasov, I.R. & Lamberov, A.A. Structural and Electronic Properties of Highly Dispersed Particles of the Active Components of Pd/Al2O3 Catalysts of Butadiene-1,3 Hydrogenation. Catal. Ind. 11, 278–285 (2019). https://doi.org/10.1134/S2070050419040032

Download citation

Keywords:

  • butadiene hydrogenation
  • γ-Al2O3 modification
  • NH3 temperature-programmed desorption
  • transmission electron microscopy
  • X-ray photoelectron spectroscopy